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Time series
What is a time serie.
Look at Dates and Times in R Without Losing Your Sanity to understand how to use correctly date labes in
R. Datasets to be used:
revenue <- read_csv(

"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset61.csv")
revenue$YEAR<- as.Date(paste0(revenue$YEAR, '-01-01'))

production <- read_csv(
"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset62.csv")

# We replace the weird "M" before months.
production <- rename(production, date=`YYYY-MM`)
production$date <- gsub("M","-",production$date)
production$date <- as.Date(as.yearmon(production$date))

dataset_training <- read_csv(
"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/trainexer61.csv")

Time series data are a specific type of data that need a somewhat special treatment when using econometric
methods. The specific aspect of time series variables is that they are sequentially observed. That is, one
observation follows after another. The sequential nature of time series observations has important implications
for modeling and especially for forecasting and this is different from the cross-sectional data that we have
mostly looked at so far.

Think of the shoe size of your next-door neighbor. Now, it is quite unlikely that the very fact that someone
lives next to you, implies that this person’s shoe size has predictive value for yours. But with time series
data, this is different.

Yesterday’s sales level, likely has predictive value for today’s sales level. Just like last month’s inflation has
for current inflation and your last year’s disposable income for this year’s.

A time series variable is observed at a regular frequency. This can be once per year, once per month,
every day and sometimes, like in some areas of finance, even each millisecond. You can imagine that recent
observations on a certain time series variable can have predictive value for future observations. If it is
winter-like weather today, it will most likely be so tomorrow. When unemployment is high this month, it
probably is still going to be high next month.

So in terms of regression models, you may want to include the past of a variable in order to predict its future.
That is, to predict a new observation of y, you can use another variable X, but you can also think of using y
one period lagged. y(−1).

The inclusion of lagged values of the dependent variable in your regression model can also prevent you
from drawing spurious conclusions. That is, you might think that another variable X helps to predict
the variable of interest Y, while in reality, Y one period lagged predicts Y and X is irrelevant.

To illustrate this point consider two variables, X and Y, for which we know that the true data generating
process is such that they depend with a factor 0.9 on their own previous value, whereas the variables X and
Y are completely uncorrelated.

xt = 1 + 0.9xt−1 + εx,t and yt = 2 + 0.9yt−1 + εy,t

Two series completely uncorrelated E(εy,t, εx,s) = 0∀t, s

A scatter of simulated Y and X variables with 100 observations may look like this.
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Note that there seems to be some positive connection between the two, while we know that they are completely
uncorrelated. You could be tempted to fit a simple regression model. Now suppose you would do so.

At the left-hand side of this table, you see that we estimate the slope parameter to be equal to 0.4 with a
p-value of 0.000. So, this suggests that X has predictive value for Y. Now we know of course, this cannot be
true given the way we created the data. The right-hand panel of the table shows what happens if we also
include the Y variable one period lagged. The coefficient for this lagged variable is 0.82 and it is significant,
whereas the coefficient of X is close to 0 and not statistically significant anymore.

You may now wonder whether we should have included not only X, but also X one period lagged. Consider
the regression model where Y depends on Y one period lagged, X and also X one period lagged. Do X and
its lag have any predictive power?

• Use F-test F = (R2
1−R

2
0)/g

(1−R2
1)/(n−k) ∼ F(g,n−k)

• Number of restrictions: g = 2
• number of observations: n = 100
• number of parameters unrestricted model: k = 4
• values of R-squared: Unrestricted: R2

1 = 0.756 and Restricted: R2
0 = 0.747

• Substitute these values in formula for F-test: F = 1.8 < 3.1
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• Joint effect of X and X(−1) on Y is not significant

The larger model contains two extra variables, so the number of restrictions is two. We have 100 observations
and the full model has 4 variables. The two R-squared values were reported in the table. Substituting these
values in the familiar expression for the F-test gives a value of 1.8, which is smaller than the 5% critical value
of 3.1. So even when we include X and one period lagged X, then these variables do not help to predict
Y. Recall that the scatter of Y versus X was very suggestive, but proper analysis shows that pictures can
sometimes fool us.

Example Airline revenue

Dataset: revenue

Simulated data set on yearly revenue passenger kilometers, 1975-2015 (estimation period 1976-2015, with
pre-sample value for 1975).

• RPK1: Revenue Passenger Kilometers of company 1 (1975-2015)
• RPK2: Revenue Passenger Kilometers of company 2 (1975-2015)
• X1: log(RPK1) (1975-2015)
• X2: log(RPK2) (1975-2015)
• DX1: first difference of X1, growth rate of RPK1 (1976-2015)
• DX2: first difference of X2, growth rate of RPK2 (1976-2015)
• Year: calendar year

Let us now look at how time series in economics and business can look like. Here is an example of passenger
revenue data for an airline. The variable of interest is revenue passenger kilometers, which is the sum total
over one year of the distance in kilometers traveled by each passenger on each flight of this airline company.

The left-hand graph gives the actual total number of kilometers traveled. The middle graph is obtained when
taking natural logs and the right-hand graph shows the yearly growth rates.
# We create the log and the growth rate of both series
revenue <- revenue %>% mutate(X1=log(RPK1),DX1=c(NA,diff(log(RPK1))),X2=log(RPK2),DX2=c(NA,diff(log(RPK2))))

plot_a <- ggplot(data=revenue, aes(x=YEAR)) +
geom_line(aes(y=RPK2),col="blue") +
labs(x = "", y = "", title = "RPK2",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_b <- ggplot(data=revenue, aes(x=YEAR)) +
geom_line(aes(y=X2),col="blue") +
labs(x = "", y = "", title = "log(RPK2)",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_c <- ggplot(data=revenue, aes(x=YEAR)) +
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geom_line(aes(y=DX2),col="blue") +
labs(x = "", y = "", title = "D.log(RPK2) Growth rates",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_a, plot_b, plot_c, nrow = 2)

12.5

15.0

17.5

19
77

19
82

19
87

19
92

19
97

20
02

20
07

20
12

RPK2

2.4

2.6

2.8

19
77

19
82

19
87

19
92

19
97

20
02

20
07

20
12

log(RPK2)

−0.02

0.00

0.02

0.04

19
77

19
82

19
87

19
92

19
97

20
02

20
07

20
12

D.log(RPK2) Growth rates

• RPK: Revenue Passenger Kilometers (in billions) yearly totals 1976-2015, trend somewhat exponential
• log(RPK): more linear trend
• D.log(RPK) = log(RPKt)− log(RPKt−1) ≈ RPKt−RPKt−1

RPKt−1
yearly growth rate of RPK

The raw data on the left seems somewhat exponentially increasing, whereas the trend for the log of the time
series seems more linear. The yearly growth rates fluctuate between minus 2% and plus 4%. The two leftmost
graphs show that the data have a pronounced upward trend. When this occurs, it is not reasonable to assume
that the mean of the data is constant over time. In fact, the mean increases with each new observation.

In the next section, we will deal with this important issue in more detail, as for proper statistical analysis,
we need data with constant mean. A constant mean is one aspect of what we call stationarity. For
a stationary time series like in the D.log(RPK1) graph here, we have a straightforward modeling strategy.
But for non-stationary time series, we will first need to get rid of this non-stationarity.

This issue of trends is even more important when two time series show similar trending behavior. Look at
this graph that depicts the revenue passenger kilometers of two airlines.
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plot_d <- ggplot(data=revenue, aes(x=YEAR)) +
geom_line(aes(y=RPK2)) + geom_point(aes(y=RPK2,col="RPK2")) +
geom_line(aes(y=RPK1)) + geom_point(aes(y=RPK1,col="RPK1")) +
labs(x = "", y = "", title = "RPK1 and RPK",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_e <- ggplot(data=revenue, aes(x=YEAR)) +
geom_line(aes(y=X2)) + geom_point(aes(y=X2,col="log RPK2")) +
geom_line(aes(y=X1)) + geom_point(aes(y=X1,col="log RPK1")) +
labs(x = "", y = "", title = "Log of RPK1 and RPK2",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_d, plot_e, nrow = 2)
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Clearly, they seem to have the same trend, especially when you take logs. This feature can be useful for
forecasting in the following way. You may use both time series to estimate the common trend, then you can
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forecast the trend. And finally, derive the individual forecast for each of the airlines. In case of a single or
univariate time series, you can use its own past to make forecasts. When you have several or multivariate
time series like in this example, you can try to use the other series to improve your forecasts.

Example Industrial Production

Dataset: production

Data set on Industrial Production and the Composite Leading Index for the USA, monthly data Jan 1985 -
Dec 2007 (Source: Conference Board, USA). Estimation period is Jan 1986 - Dec 2005 (pre-sample values in
1985). Forecast evaluation period is Jan 2006 - Dec 2007.

• CLI: Composite Leading Index (based on 10 leading indicators)
• IP: Industrial Production (index, seasonally adjusted)
• LOGCLI: logarithm of CLI
• LOGIP: logarithm of IP
• GRCLI: monthly growthrate of CLI, first difference of LOGCLI
• GRIP: monthly growthrate of IP, first difference of LOGIP

Here is another pair of time series that are clearly related over time. These are the monthly industrial
production index for the United States of America and the so-called composite leading indicator or CLI.
plot_f <- ggplot(data=production, aes(x=date)) +

geom_line(aes(y=IP,col="IP")) +
geom_line(aes(y=CLI,col="CLI")) +
labs(x = "", y = "", title = "Industrial Production and Composite Leading Index ",

subtitle = ("Estimation period is Jan 1986 - Dec 2005")) +
scale_x_date(date_breaks = "2 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
plot_f
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The CLI is constructed by The Conference Board based on a set of ten variables like manufacturer’s new
orders, stock prices and consumer expectations. All these variables are forward looking. And therefore, they
are believed to have predictive value for future macroeconomic developments. And for that reason, it may be
useful to consider the CLI in case you want to forecast a variable like industrial production.

As with the airlines, the trends in industrial production and the Composite Leading Index seem to follow a
similar pattern, which here associates with the business cycle. In our last section on time series, you will see
if industrial production can indeed be predicted by means of this index.

Example spurious regression

Dataset: dataset_training

• epsx: sample of 250 values from normally and independently white noise with mean 0 and variance 1
(independent of εyt)

• epsy: sample of 250 values from normally and independently distributed white noise with mean 0 and
variance 1 (independent of εxt)

• x: random walk generated from epsx: x1 = 0, and xt = xt−1 + εxt
• y: random walk generated from epsy: y1 = 0, and yt = yt−1 + εyt

The datafile contains values of four series of length 250. Two of these series are uncorrelated white noise
series denoted by εx,t and εy,t where both variables are NID(0, 1) and E(εy,t, εx,s) = 0∀t, s. The other two
series are so-called random walks constructed from these two white noise series by xt = xt−1 + εxt and
yt = yt−1 + εyt.

As εxt and εyt are independent for all values of t and s, the same holds true for all values of xt and yt
The purpose of this exercise is to experience that, nonetheless, the regression of y on x indicates a highly
significant relation between y and x if evaluated by standard regression tools. This kind of result is called
spurious regression and is caused by the trending nature of the variables x and y.
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• a) Graph the time series plot of xt against time t, the time series plot of yt against time t, and the
scatter plot of yt against xt. What conclusion could you draw from these three graphs?

# We add an index column to the dataset for the time t
dataset_training <- dataset_training %>% mutate(time = row_number())
plot_1 <- ggplot(data=dataset_training, aes(x=time)) +

geom_line(aes(y=X)) +
labs(x = "", y = "", title = "X in time",

subtitle = ("")) +
theme_bw() +
theme(legend.background = element_rect(fill = "transparent")) +
scale_color_brewer(name= NULL, palette = "Dark2")

plot_2 <- ggplot(data=dataset_training, aes(x=time)) +
geom_line(aes(y=Y)) +
labs(x = "", y = "", title = "Y in time",

subtitle = ("")) +
theme_bw() +
theme(legend.background = element_rect(fill = "transparent")) +
scale_color_brewer(name= NULL, palette = "Dark2")

plot_3 <- ggplot(data=dataset_training, aes(x=X,y=Y)) +
geom_point(shape=20) +
labs(x = "X", y = "Y", title = "X vs Y",

subtitle = ("")) +
theme_bw() +
theme(legend.background = element_rect(fill = "transparent")) +
scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_1, plot_2, plot_3, nrow = 2)
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The two variables X,Y have completly random movements up and down. And the scatter plot seems to have
a negative relation, so we could use X to forecast Y, but we know that this is not the case, the scatterplot is
misleading in this sense.

• b) To check that the series εxt and εyt are uncorrelated, regress εyt on a constant and εxt. Report the
t-value and p-value of the slope coefficient.

We use the summ() function to output our regression.
lm1 <- lm(EPSY ~ EPSX, data=dataset_training)
summ(lm1, digits = 3)

Observations 250
Dependent variable EPSY
Type OLS linear regression

F(1,248) 1.736
R2 0.007
Adj. R2 0.003

Est. S.E. t val. p
(Intercept) 0.031 0.064 0.484 0.629
EPSX -0.088 0.067 -1.318 0.189

Standard errors: OLS

The t-value of the coefficient is around -1.32 and the p-value around 0.19, this shows that εxt and εyt have no
significant relation.

• c) Extend the analysis of part (b) by regressing εyt on a constant, εxt, and three lagged values of εyt
and of εxt. Perform the F-test for the joint insignificance of the seven parameters of εxt and the
three lags of εxt and εyt. Report the degrees of freedom of the F-test and the numerical outcome
of this test, and draw your conclusion. Note: The relevant 5% critical value is 2.0.

lm2 <- lm(EPSY ~ lag(EPSY,1) + lag(EPSY,2) + lag(EPSY,3) + EPSX + lag(EPSX,1) + lag(EPSX,2) + lag(EPSX,3), data=dataset_training)
summ(lm2, digits = 3)

Observations 247 (3 missing obs. deleted)
Dependent variable EPSY
Type OLS linear regression

F(7,239) 0.546
R2 0.016
Adj. R2 -0.013

The H0 : γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ7 = 0 and the degrees of freedom of F test df = (g, n− k) where g
is the number of parameter restrictions on the null, n is the number of observations and k is the number of
variables in the unrestricted model. In this case we have:

• g = 7 All 7 restrictions equal to 0.
• n = 247 Because 3 observarions are lost because the 3 lag values, so the first available observation is in
t = 4.

• k = 8 Due to the 7 coefficient plus the constant term.

11

https://cran.r-project.org/web/packages/jtools/vignettes/summ.html
https://diego-eco.github.io/files/econometrics_simple_multiple.html#statistical_tests


Est. S.E. t val. p
(Intercept) 0.046 0.066 0.698 0.486
lag(EPSY, 1) 0.025 0.064 0.387 0.699
lag(EPSY, 2) -0.016 0.065 -0.244 0.807
lag(EPSY, 3) -0.047 0.064 -0.734 0.464
EPSX -0.097 0.069 -1.405 0.161
lag(EPSX, 1) 0.020 0.070 0.284 0.777
lag(EPSX, 2) -0.060 0.070 -0.857 0.392
lag(EPSX, 3) 0.009 0.068 0.138 0.890

Standard errors: OLS

We can see the F-statistic at the top of the output or calculate it by hand F = (R2
1−R

2
0)/g

(1−R2
1)/(n−k) ∼ F(g,n−k) where

R2
0 = 0 because is a model with only a constant term. F = 0.55 and as is smaller of the critical value of 2.

We do NOT reject the H0. This is correct as the value of εyt is independent of all other observations.

• d) Regress y on a constant and x. Report the t-value and p-value of the slope coefficient. What
conclusion would you be tempted to draw if you did not know how the data were generated?

lm3 <- lm(Y ~ X, data=dataset_training)
summ(lm3, digits = 3)

Observations 250
Dependent variable Y
Type OLS linear regression

F(1,248) 1090.611
R2 0.815
Adj. R2 0.814

Est. S.E. t val. p
(Intercept) -2.487 0.214 -11.606 0.000
X -0.515 0.016 -33.024 0.000

Standard errors: OLS

It seems by looking at the large t-value of X that X has a relevant explanatory power over Y. We know that
this is not the case, so the regression is misleading, due to the trending nature of both variables. Look again
at the scatterplot of a), it happens that X moves downward for long periods as Y moves upwards for long
periods. This is why it seems to be a negative relation.

• e) Let et be the residuals of the regression of part (d). Regress et on a constant and the one-period
lagged residual et−1. What standard assumption of regression is clearly violated for the regression
in part (d)?

# We add the residuals of lm3 into the dataset
dataset_training <- dataset_training %>% mutate(lm3.res = resid(lm3))
lm4 <- lm(lm3.res ~ lag(lm3.res,1), data=dataset_training)
summ(lm4, digits = 3)

This coefficient is significant at 99%, this shows that the residuals are very strongly correlated. Therefore
violates the standar regression assumption A7 that the error terms should be uncorrelated.
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Observations 249 (1 missing obs. deleted)
Dependent variable lm3.res
Type OLS linear regression

F(1,247) 1457.056
R2 0.855
Adj. R2 0.854

Est. S.E. t val. p
(Intercept) 0.001 0.067 0.008 0.993
lag(lm3.res, 1) 0.925 0.024 38.171 0.000

Standard errors: OLS

Representing time series
Time series models typically are constructed with two main objectives. First, we want to describe the key
properties of the time series data. In particular, the nature of the trend and the correlations with past values.
And second, we may want to exploit these features to make forecasts of future observations.

The time series of interest is denoted as y, with the subscript t indicating the observation in period t. n refers
to the number of available observations, or the length of the time series.

Time serie :
yt where t = 1, .., n is the time index.

### Stationarity

Let us begin with a very important issue, that of stationarity. A time series y is called stationary, if its
mean, variance, and covariances with past observations are constant over time. Stationarity is an
important condition that needs to be satisfied before we can even start thinking about designing a meaningful
model for a given time series. Intuitively, if for each new observation of the time series properties like the
mean and variance change, then we cannot reliably model such data, let alone provide reliable forecasts.

yt is stationary if :
mean =E(yt) = µ is fixed and same for all t

autocovariance =E[(yt − µ)(yt−k − µ)] = γk is same for all t

The autocovariances gamma k measure how strongly related observations at different points in time are. In
terms of forecasting, they indicate whether past observations can be useful to make predictions of future
observations.

Note that when all these autocovariances are zero, then the past carries no predictive value for the future.
We call such a time series white noise.

Special case : γ = k = 0∀k
yt ⇒ The time serie is White Noise

Note that this relates to assumption A5 for regression models. A white noise time series cannot be predicted
from its own past, and the only useful prediction is the mean of the variable itself.
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A5. Uncorrelated error terms: E(εiεj) = 0∀i 6= j

Now this brings us to the essence of time series modeling. Our aim is to design a model that distills
information from the past for forecasting. The model is deemed successful or adequate, if after all this
distillation, there is nothing left that is informative for prediction. That is, the residuals are white noise.

Purpose of modeling time series: Create a time series model such that residuals are white noise.

In all what follows, we follow the usual convention to write a white noise variable as epsilon.

White noise
Uncorrelated series with mean zero : εt

Autoregressive model

Sometimes we call this εt the error but we also use the word shock to indicate that epsilon is something new
to the variable y. A simple and popular time series model is the autoregressive model. An autoregression
of order 1, or briefly AR(1), is a model where the current observation of y in period t is explained by
the previous observation of y in period t minus 1. This simple model provides a nice way to illustrate the
relevance of stationarity.

AR(1) yt = α+ βyt−1 + εt

If the slope parameter β lies between -1 and +1, the effects of past shocks εt die out. So, the more distant in
the past, the less impact those shocks have on current values of the variable yt. This is a typical property of
a stationary time series.

Stationarity if − 1 < β < 1

yt = α+ βyt−1 + εt = α+ β(α+ βyt−2 + εt−1) + εt

yt = α(1 + β) + εt + βεt−1 + β2yt−2 = α(1 + β) + εt + βεt−1 + β2(α+ βyt−3 + εt−2) = ...

yt = α

t−2∑
j=0

βj +
t−2∑
j=0

βjεt−j + βt−1y1

For t→∞ we get βt−1y1 → 0 and yt = α

(1− β)
∑∞
j=0 β

jεt−j

Later, we will see that stationarity is lost if beta is equal to 1. The first order autoregression assumes that
current y can be predicted by 1 period lagged y, but of course it might also be that 1 period lagged y and
also 2 period lagged y are useful for predicting the current observation.

AR(2) yt = α+ β1yt−1 + β2yt−2 + εt

In fact, the number of lags can run up to p, giving rise to the so-called AR(p) model.

AR(p) yt = α+ β1yt−1 + β2yt−2 + ...+ +βpyt−p + εt

Consider again the autoregression of order 1, where the current value of the white noise series epsilon is
uncorrelated with the past of y.
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AR(1) yt = α+ βyt−1 + εt

εt uncorrelated with yt−k∀k

If β = 1 then yt can not be stationary because:

• If α 6= 0 and β = 1, then yt cannot have a fixed mean.

When the intercept alpha is not 0, then the mean will change by alpha for every new observation.

E(εt) = 0 so µ = E(yt) = α+ E(yt−1) + 0 = α+ µ 6= µ

- If α = 0 and β = 1, then yt cannot have a fixed variance.

And when the intercept alpha is zero then the variance of the observations increases over time.

yt = yt−1 + εt so (yt − µ) = (yt−1 − µ) + εt uncorrelated.

E[(yt − µ)2] = E[(yt−1 − µ)2] + E[ε2t ] > E[(yt−1 − µ)2]

Moving average model

Another useful time series model includes past shocks as explanatory variable. When you look at the epsilons
as forecast errors, you can learn from these errors by taking them into account when making new forecasts.
The so called first order moving average model, or MA(1), includes epsilon 1 period lagged.

MA(1) yt = α+ εt + γεt−1

As εt is uncorrelated with it’s own past and future, this model implies that yt is correlated with yt−1 period
lagged but not with more distant lags. yt−k for k = 2, 3...

We can generalize this model to a moving average model of order q, which includes q lag forecast errors.

MA(q) yt = α+ εt + γ1εt−1 + ...+ +γqεt−q

ARMA model

It is also possible to combine the two models, which gives rise to an ARMA(1,1), if p and q are both equal to
1, or an ARMA(p,q), if these orders take different values.

ARMA(p,q) yt = α+ β1yt−1 + β2yt−2 + ...+ βpyt−p + εt + γ1εt−1 + ...+ +γqεt−q

Two autoregressive equations.

Moving average (MA) terms may arise when two autoregressive processes are related. Let εx,t and εy,t be be
two mutually independent white noise processes, and let yt = γxt + εy,t and xt = δxt−1 + εx,t. We can derive
the orders p and q for the ARMA model for yt (that does not include xt).

• Consider that yt − δyt−1 = γ(xt − δxt−1) + εy,t − δεy,t−1

• So we can express
yt = δyt−1 + γεx,t + εy,t − δεy,t−1

Notice that this is an AR(1) order proces p=1, and error wt = γεx,t + εy,t − δεy,t−1 is a MA(1) because
E(wtwt−1) = −δV ar(εy,t−1) and E(wtwt−2) = E(wtwt−3) = E(wtwt−4) = ... = 0
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We see that now y depends on y 1 period lagged, on the shock to x, the shock to y and, this is crucial, also
the one period lagged shock to y. So the autoregressive order is one, whereas the moving average order is
also one. Hence, correlation, across joint autoregressive time series can lead to individual time
series models of the ARMA type.

(Partial) Autocorrelation Function

The time series models that we have discussed so far, autoregression and moving average and their combination,
imply specific correlation properties of the time series. This relation can be reversed, that is, when you see
certain properties of the data in the real world you can decide which model to use. And the autocorrelation
is a very useful tool for this purpose.

k-th order sample autocorrelation coefficient :

ACFk = cor(yt, yt−k) =
∑n
t=k+1(yt − ȳ)(yt−k − ȳ)∑n

t=k+1(yt − ȳ)2

For example, when the data are generated by a moving average model of order q, then the sample autocorre-
lations after lag q, will all be close to zero. For example, when the data are generated by a moving average
model of order q, then the sample autocorrelations after lag q, will all be close to zero.

• If yt is MA(q), then ACFk ≈ 0 for all k > q.

Next to autocorrelations, we also have the concept of partial autocorrelations. These account for the fact
that the observations of y at time t yt, and at time t minus two yt−2, may seem to be correlated due to the
fact that they both are related to the observation of y at t minus one yt−1.

The sample partial autocorrelations follow from regressions of y on its own past values. If in this regression,
the k-th lag coefficient is insignificant for values larger than p, then this suggests to use an AR model of this
order p.

• k-th order sample partial autocorrelation coefficient: PACFk k is the OLS coefficient bk in regression
model:

yt = α+ β1yt−1 + ...+ βk−1yk−1 + βkyt−k + εk

- If yt is AR(p), then PACFk ≈ 0 for all k > p. The 95% confidence bounds around autocorrelations and
partial autocorrelations are marked by plus and minus two divided by the square root of the sample size n. -
5% critical value: not significant if − 2√

n < (P )ACF < 2√
n .

Back to airlines example

Let us return now to the airline revenue passenger kilometers data. The data show a trend. And the growth
rates do not.
grid.arrange(plot_b, plot_c, nrow = 2)
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D.log(RPK2) Growth rates

• log(RPK) is not stationary.
• first difference of log(RPK) (yearly growth rate) is stationary.

First we create the time series object in R And we use use the library forecast to plot the Acf and Pacf
# We create the time series object
ts1 <- ts(revenue[,-1], frequency = 1,start = 1975)
par(mfrow=c(2,2))
Acf(ts1[,4],main = "ACF of log(RPK)")
Pacf(ts1[,4],main = "PACF of log(RPK)")
Acf(ts1[,6],main = "ACF of D.log(RPK)")
Pacf(ts1[,6],main = "PACF of D.log(RPK)")
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The autocorrelations of the log series show a very slowly decaying pattern. And the partial autocorrelations
are only large at lag 1. The values for the growth rates are not significant, as the number of observations is
39 and 2 divided by the square root of 39 is about 0.3.

Trends

Next, let us pay attention to the important issue of trends. Several trend models are available.

First, you have what is called a random walk. This is an autoregressive model, but with a slope parameter
equal to 1.

yt = yt−1 + εt random walk, stochastic trend, no clear direction

When the intercept alpha is unequal to 0, then we get trending data that looks like the airline’s data, or the
industrial production index considered before.

yt = α+ yt−1 + εt(α 6= 0) : stochastic trend
When the model also contains a deterministic trend term, beta times t, then you get an explosive trend
pattern.

yt = α+ βt+ yt−1 + εt(β 6= 0) : stochastic (explosive) trend
If no lagged value of y is included, this gives a fully deterministic trend model.

yt = α+ βt+ εt(β 6= 0) : deterministic trend

And if the lagged y term has a parameter smaller than 1, then this still results in a deterministic trend, but
without random walk aspects.
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yt = α+ βt+ γyt−1 + εt(β 6= 0, | γ |< 1) : deterministic trend

The main notion here, is that a stochastic trend, that is where the autoregressive parameter is
equal to 1, can only be silenced by transforming the data, by taking their first difference. This is denoted
by the symbol Delta.

yt = α+ yt−1 + εt then ∆yt = yt − yt−1 = α+ εt

Example deterministic and stochastic trend

To give you some visual impression of how the parameters in a time series model determine how the data will
look like, consider the following graphs of artificially generated data.

Clearly the parameters matter a lot in how the data look like. This notion will be exploited in the actual
analysis of real data. You look at the data and you see certain properties and from these properties, you can
get ideas on the models that might be useful to fit and forecast this time series.

Cointegration

If two time series share the same stochastic trend, we say that they are cointegrated. In the next section, we
will consider this in more detail.

• Sometimes: xt and yt each have stochastic trend, but yt − cxt is stationary for some value of c.
• Cointegration (common stochastic trend)

Suppose that zt = zt−1 + εz,t is unobserved, whereas xt = α1 + γ1zt + εx,t and yt = α2 + γ2zt + εy,t are
observed, where εz,t, εx,t, εy,t are white noise processes. Show that xt and yt are cointegrated, and find the
value of c for which yt − cxt is stationary.

γ1yt − γ2xt = (γ1α2 − γ2α1) + (γ1εy,t − γ2εx,t)

Where εt = γ1εy,t − γ2εx,t is white noise, therefore stationary.

γ1yt − γ2xt = γ1(yt − γ2
γ1
xt) So c = γ2

γ1
.

We use the fact that y and x share the same stochastic trend z. A specific linear combination of y and x does
not include that trend anymore.

Example of autocorrelation

If yt is a stationary process with mean µ, then the k-th order autocovariance is defined as γk = E[(yt −
µ)(yt−k − µ)]. In particular, the variance is γ0 = E(yt − µ)2. The k-th order autocorrelation is defined as
ρk = Cov(yt,yt−k)

V ar(yt) .
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The AR(1) model is:
yt = α+ βyt−1 + εt

We know E(εt) = 0 and εt is uncorrelated with all values of ys for all s < t.

• a) Show that the mean of the AR(1) model is equal to µ = α
1−β

The expected value of yt is equal to E(yt) = E(α+ βyt−1 + εt) = α+ βE(yt−1) + E(εt) = µ = α+ βµ+ 0
And that means that β 6= 1

µ = α

1− β

• b) Define zt = yt − µ. Show that zt = βzt−1 + εt and that V ar(zt) = σ2

(1−β2) .

In part a) we see that α = µ(1− β) = µ− βµ. If we substitute this in the AR(1) equation we get:

yt = µ− βµ+ βyt−1 + εt

yt − µ = β(yt−1 − µ) + εt

And as we can define zt = yt − µ

zt = βzt−1 + εt

The expected value of E(zt) = E(yt − µ) = 0 and the variance of V ar(zt) = E(zt −E(zt))2 = E(z2
t ) So if we

use the definition of zt we obtain:

V ar(zt) = E(z2
t ) = E((βzt−1 + εt)2) = β2E(z2

t−1) + E(ε2t ) + 2βE(zt−1εt)

We use the fact that E(zt−1εt) = 0

V ar(zt) = β2V ar(z2
t ) + σ2 + 0

V ar(zt) = σ2

(1− β2)

That means that that −1 < β < 1

• c) Use the idea of part (b) to show that the autocorrelations of yt are equal to ρk = βk

Because yt and zt have the same autocovariances, we compute those of zt, it is simplier because the mean of
zt is zero. The first order autocovariance γ1

γ1 = E(ztzt−1) = E(βzt−1 + εt)zt−1 = βE(z2
t−1) + E(εtzt−1) = βγ0 + 0 = βγ0

Hence the first order autocorrelation is:

ρ1 = γ1

γ0
= β

And the second order autovoariance γ2 is equal:

γ2 = E(ztzt−2) = E(βzt−1 + εt)zt−2 = βE(zt−1zt−2) + E(εtzt−2) = βγ1 + 0 = β(βγ0) = β2γ0

Hence the second order autocorrelation is:

ρ2 = γ2

γ0
= β2
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And similarly, the k-th order autocovariance is equal to:

γk = E(ztzt−k) = E(βzt−1 + εt)zt−k = βE(zt−1zt−k) + E(εtzt−k) = βγk−1 + 0 = βγk−1

Which is equal to:

γk = βkγ0

And the k-th order autocorrelation:
ρk = γk

γ0
= βk

• d) Argue that stationarity requires that −1 < β < 1

The correlations are always −1 < β < 1 so | β |≤ 1, furthermore β = 1 is exclueded in a) and β = −1
excluded in part b).

Specification and estimation
In this section, you will learn which steps to take to specify time series models, and to estimate parameters in
such models. Stationarity is crucial here. And therefore, you should take care of any non-stationarity right
at the start. Once a stationary series is obtained after proper transformation, you can use the autocorrelation
(AC) and partial autocorrelation (PAC) functions to specify a first-guess model.

We start with the major motivation for using time series, that is, forecasting. Forecasts are based on a model
that properly summarizes past information.

Past values of time series model→ Model → Forecast future values

This past information can concern the own past of the dependent variable y, or possibly also the past of an
explanatory factor, x. For notational convenience, we use PY and PX to denote this past information.

• In a univariate model, the forecast is based only on the past of the dependent variable y itself.
• And if we use also an explanatory factor x, then the forecast is a function of the past of both x and y.

Notation :
yt : time series of interest (t = 1, ..., n)
xt : time series possible explanatory factor (restrict to one)

Pyt−1 : [yt−1, yt−2, ..., y1] past information on y at time t
Pxt−1 : [xt−1, xt−2, ..., x1] past information on x at time t

Univariate time series forecast model : ŷt = F (Pyt−1)
Forecast model with explanatory factor : ŷt = F (Pyt−1, Pxt−1)

Of course, we want to use the past information in an optimal way, such that there is no predictive value
anymore in the errors that we make. Indeed, we wish to arrive at a forecast error that is uncorrelated with
the information in PY and PX.

• Aim: Optimal use of past information to get best forecasts.
• Wish: Forecast error εt = yt − ŷt uncorrelated with past information.

Note that if the forecast error would be predictable, then some relevant information is still missing that could
be used to improve the forecast.
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Univariate time series model

Let us start with a univariate time series model. Here the forecast for y is a function of past observations of y
only.

Univariate time series forecast model: : ŷt = F (Pyt−1)

Now we first have to decide on the function F. And although many functions F can be chosen, a popular
choice is the linear function. When the lagged information in PY is limited at lag p, the well-known
autoregressive model of order p emerges. AR(p).

The true value of y is the forecast plus an error term that is equal to the forecast error. And together, this
gives rise to the AR(p) model.

ŷt = α+ β1yt−1 + β2yt−2 + ...+ +βpyt−p

yt = ŷt + εt = α+ β1yt−1 + β2yt−2 + ...+ βpyt−p + εt

Because εt is white noise that is, the future values of the epsilons cannot be predicted in a linear way. This
can be seen in the following way:

Consider forecasts from an autoregression of order p, which says that there is useful information in the past
until, and including, p observations ago ŷt = α+ β1yt−1 + β2yt−2 + ...+ +βpyt−p. And consider the forecast
error epsilon, which should be uncorrelated with the past of y. εt = yt − ŷt uncorrelated with uncorrelated
with ys for all s < t.

You can show that, in this situation, the epsilon process is white noise, that is, the future values of the
epsilons cannot be predicted in a linear way.

• Without loss of generality, consider case s < t.
• εs = ys − α−

∑p
j=1 βjys−j is a linear function of yr, r ≤ s < t

• et is uncorrelated with yr for all r < t, so also uncorrealted with εs.

The crucial step here is that epsilon is a linear function of current and past values of the dependent
variable.

Estimation of AR and ARMA

To estimate the parameters in an AR model of order p, we use the same ideas as in linear regression,
where an optimal strategy is to minimize the sum of squared errors, which, of course, now are the
forecast errors. So, you can use ordinary least squares.

Forecast error: : εt = yt − ŷt = yt − α−
p∑
j=1

βjyt−j

To minimize via OLS: :
n∑

t=p+1
ε2t

As a moving average model MA(q) includes also lagged forecast errors that are still unknown
before estimation, we have to resort to the method of maximum likelihood in case of ARMA
models.
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ADL(p,r) model

The usefulness of least squares extends to the case where the time series model also includes the past of an
explanatory factor x. And again, here the popular choice is to use a linear forecast function.

Forecast: : ŷt = F (Pyt−1, Pxt−1)

find F such that εt = yt − ŷt uncorrelated with Pyt−1, Pxt−1

And this model that includes the lags of y and also the lags of x, when there are p lags of y, and r lags of x,
we usually call this the autoregressive distributed lag model of order p and r, or shortly ADL(p,r).

ADL(p,r) : ŷt = α+ β1yt−1 + ...+ βpyt−p + γ1xt−1 + ...+ γrxt−r

Also for this ADL model, we can use the least squares method to estimate the parameters.

To minimize via OLS: :
n∑

t=m+1
ε2t where m=max(p,r)

Granger causality

The ADL model is particularly useful to examine what is called Granger causality, named after the Nobel
Laureate Sir Clive Granger. This idea of causality builds on the idea of forecastability. That is, when the past
of one variable is helpful to predict the future of another, you might consider that as some form of causality.

What you do is to construct two ADL models. One for the variable y, and another for the variable x. Note
that both models include the past of the dependent variable itself plus the past of the other variable.

yt = α+
p∑
j=1

βjyt−j +
r∑
j=1

γjxt−j + εt

xt = α∗ +
p∗∑
j=1

β∗j xt−j +
r∗∑
j=1

γ∗j yt−j + ε∗t

-xt helps to predict yt if γj 6= 0 for some j -yt helps to predict xt if γ∗j 6= 0 for some j

If some of the gamma parameters in the ADL model for y are different from 0, then the past of x helps to
predict the future of y. And vice versa, in case the gamma star parameters are non-zero in the ADL model
for x.

In case of such of non-zero parameters, you can say that one variable is Granger causal to the other.
For example, we may find that x is Granger causal for y, but not the other way around. This indicates that
the past of x can be helpful for predicting y. But for forecasting x, only its own past is relevant.

• xt is Granger causal for yt if it helps to predict yt, whereas yt does not help to predict xt.

You can check the significance of, for example, the γ∗j coefficients in the ADL model for x by means of the
familiar F-test. And, conveniently, as these two models only include lag variables, you can still estimate the
parameters using least squares for each of the two equations separately.

Test H0 : γ∗j = 0∀j = 1, ..., r∗ ∼ F − test

23

https://en.wikipedia.org/wiki/Granger_causality


Consequences of non-stationarity

The first thing that needs to be done in modeling is to make sure that the time series you wish to analyze is
stationary. The reason that we need stationarity is that this is required for proper statistical analysis. So,
one should first somehow test if the variable of interest is stationary.

• Regression assumption A2 not satisfied: regressors yt−j are random.

• Standard OLS t- and F-tests hold true in large enough samples provided all variables in equation are
stationary.

So, one should first somehow test if the variable of interest is stationary. To do this, we can again make
use of a time series model. For example, in the case of an autoregression of order 1, we know that when
the parameter is equal to 1, then the time series is not stationary. And this suggests that we can test for
stationarity by testing the value of this parameter.

Test for stationarity :
AR(1) yt = α+ βyt−1 + εt test H0 : β = 1 againstH1 : −1 < β < 1

As we are familiar with statistical tests for parameters to be equal to 0, we usually rewrite the AR(1) model
by subtracting the one period lagged yt−1 from both sides of the equation.

Rewrite AR(1) :
∆yt = yt − yt−1 = α+ (β − 1)yt−1 + εt = α+ ρyt−1 + εt

Where ρ = (β − 1)

Unit root test

Now, the ρ parameter can be tested to be equal to 0 using a t-test. As we are interested in the parameter
rho being 0, or smaller than 0, we reject non-stationarity when the t- ratio is more negative than minus 2.9.
Note, that this is not the usual value of t0.95 = −1.65. And this is due to the fact that under the null
hypothesis, y is non-stationary, which gives rise to a different statistical theory.

Test for stationarity :
∆yt = α+ ρyt−1 + εt test H0 : ρ = 0 against H1 : ρ < 0

Reject H0 : non-stationarity if tρ̂ < −2.9

For an AR(2) model we follow the same process, it is convenient to write the AR(2) model as a mixture of
variables in first differences and in levels.

Rewrite AR(2) : yt = α+ β1yt−1 + β2yt−2 + εt

∆yt = yt − yt−1 = α+ (β1 − 1)yt−1 + β2yt−2 + εt

Sum and substract β2yt−1

∆yt = α+ (β1 + β2 − 1)yt−1 − β2yt−1 + β2yt−2 + εt

∆yt = α+ (β1 + β2 − 1)yt−1 − β2(yt−1 − yt−2) + εt

∆yt = α+ (β1 + β2 − 1)yt−1 − β2∆yt−1 + εt

we get :
∆yt = δ + ρyt−1 + γ∆yt−1 + εt

Where δ = α, ρ = (β1 + β2 − 1), γ = −β2
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Augmented Dickey Fuller

This rewriting of the AR(p) models provides the basis of the so-called Dickey-Fuller test. The test equation
can either include a deterministic trend, or not, and the choice is usually based on the visual impression of
the data.

The inclusion or exclusion of the deterministic trend term, βt, matters for the relevant 5% critical value.
When the trend term is not included, the critical value for the t-test on rho is tρ̂ < −2.9, as we saw before.
But when the trend is included, it becomes tρ̂ < −3.5.

If data NO clear trend direction :
∆yt = α+ ρyt−1 + γ1∆yt−1 + ...+ γL∆yt−L + εt

Test without deterministic trend
Reject H0 : non-stationarity if tρ̂ < −2.9

If data has clear trend direction :
∆yt = α+ βt+ ρyt−1 + γ1∆yt−1 + ...+ γL∆yt−L + εt

Test with deterministic trend
Reject H0 : non-stationarity if tρ̂ < −3.5

In practice, we decide on the number of lags in the autoregression by testing for correlation in the residuals,
or by using a model selection criteria.

• Choice lag L: serial correlation check, or AIC/BIC. See (Partial) Autocorrelation Function.

When the autoregression has more than one lag, the Dickey-Fuller test is usually called the Augmented
Dickey-Fuller test, abbreviated as ADF.

Summary

So, now, how should you proceed to specify a time series model?

1. First you perform an ADF test. And when you can reject a unit root, or non-stationarity, this means
that yt is stationary, and you can model the series yt without further transformation. But when it is
not rejected, you should take the first difference, and continue with ∆yt.

2. Next, you can use OLS to estimate the parameters in an autoregression AR(p), or when you wish to
consider an autoregressive distributed lag model ADL(p,r), you perform unit root tests for both series y
and x, and proceed with levels or with first differences.

There is, however, one exceptional, and practically relevant case, namely, when y and x are not stationary,
but a linear combination of the two variables is. When yt and xt are cointegrated.

Cointegration

Two variables are called cointegrated when a linear combination is stationary. This can only occur when yt
and xt have the same stochastic trend.

yt, xt are are cointegrated if both series are non-stationary, but a linear combination is stationary : yt− cxt

You might, then, interpret this linear combination yt = cxt as the long-run equilibrium, which is an
attractive concept in economics.
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Test for cointegration

A simple test for cointegration is the Engle-Granger test. This test amounts to regressing yt on an intercept
and xt to estimate the long-run equilibrium relationship between these variables.

Engle-Granger test :
Step 1 : OLS in yt = α+ βxt + εt → b and residuals et
Step 2 : Cointegrated if ADF test on et rejects non-stationarity

∆et = α+ ρet−1 + γ1∆et−1 + ...+ γL∆et−L + wt

The residuals from this regression can then be interpreted as deviations from the equilibrium, and if the
equilibrium relation actually exists, that is if yt and xt actually are cointegrated, the residuals should be
stationary. And this can be examined, again, using the ADF test as before.

Because the test is now applied to residuals instead of an actually observed time series, the distribution of
the ADF test is different. The 5% critical value for the relevant t-test is now minus 3.4, or even minus 3.8 if
the trend term is included.

Engle-Granger test :
∆et = α+ (βt) + ρet−1 + γ1∆et−1 + ...+ γL∆et−L + wt

Test (with) or without deterministic trend
Reject H0 : non-stationarity = cointegrated if tρ̂ < −3.4 or (−3.8)

In case of cointegration, the ADL model can be written in the so-called error correction format, which
includes lagged difference variables and the stationary linear combination between yt and xt. The term error
correction follows from the notion that deviations from the long-run equilibrium get corrected by the β1
parameter in forecasting the changes of yt.

ECM : if xt, yt cointegrated, estimate :

∆yt = α+ β1(yt−1 − bxt−1) + β2∆yt−1 + β3∆xt−1 + εt

Or more lags for ∆yt,∆xt

Example: Partial adjustment and Adaptive Expectations

Several types of economic behavior lead to relations with time lags because it takes some time before
adjustments to changed conditions take place. As an illustration,consider a company producing consumer
goods. Let yt denote the production volume in month t, and let xt be the total demand volume in that
month.

Suppose that the optimal production volume y∗t is equal to y∗t = γ + δxt.

As an example, if the company has a market share of 25%, then δ = 0.25 could make sense for this company.
If demand changes, then it may take some time for the company to increase production, because it will need
to arrange for extra capital and labor.

In this scenario, we could use the partial adjustment (PA) model, the model postulates that
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yt = yt−1 + λ(y∗t−1 − yt−1) + εt

PA model :
yt = yt−1 + λ(y∗t−1 − yt−1) + εt

where 0 ≤ λ ≤ 1

If the company is pro-active, it can decide to base its production on the expected demand volume
x∗t and to produce the corresponding volume yt = γ + δx∗t .

The adaptive expectations (AE) model postulates that the expectations are partly adjusted to the previously
observed demand volume by means of

AE model :
x∗t = x∗t−1 + λ(xt−1 − x∗t−1) + εt

where 0 ≤ λ ≤ 1

It is assumed that the εt in the PA and AE models is white noise.

• a) Write the partial adjustment model in terms of only the observed variables y and x, by eliminating
y∗t .What is the type of the resulting model?

First we substitute y∗t = γ + δxt in the PA model.

yt = yt−1 + λ(y∗t−1 − yt−1) + εt = yt−1 + λ(γ + δxt−1 − yt−1) + εt

Which we can rewrite as:

yt = λγ + (1− λ)yt−1 + λδxt−1 + εt

This is an autoregressive distributed lag model (ADL) with AR lag (p=1) and DL lag (r=1).

• b) Write the adaptive expectations model in terms of only the observed variables y and x, by
eliminating x∗t .What is the type of the resulting model?

We first rewrite the AD model as

x∗t = x∗t−1 + λ(xt−1 − x∗t−1) + εt = (1− λ)x∗t−1 + λxt−1 + εt

x∗t − (1− λ)x∗t−1 = λxt−1 + εt

That means that we should replace the left term in order to eliminate the expectation variable x∗t . We know
yt = γ + δx∗t so we could rewrite δx∗t = yt − γ.

We get that δ(x∗t − (1− λ)x∗t−1) = yt − γ − (1− λ)(yt−1 − γ). And from the previous equation we get:

δ(x∗t − (1− λ)x∗t−1) = δλxt−1 + δεt

Hence:
yt − γ − (1− λ)(yt−1 − γ) = δλxt−1 + δεt

Equivalently:
yt = γ − (1− λ)γ + (1− λ)yt−1 + δλxt−1 + δεt
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yt = γλ+ (1− λ)yt−1 + δλxt−1 + δεt

So again we can see that we get an an autoregressive distributed lag model (ADL) with AR lag (p=1) and
DL lag (r=1).

• c) What is the condition for stability of the two models in parts a) and b)? Provide an economic
interpretation of this condition.

The condition is that −1 < (1 − λ) < 1, that is 0 < λ < 2. We already assumed that 0 < λ < 1, so the
condition for stability is that λ 6= 0.

If λ = 0 we can see that production is not adjusted in any systematic way in the PA model. Furthermore, we
can see that expectations are not adjusted with realized demand in the AE model.

• d) Consider the AE model based on the last two observed sales volumes, where x∗t = x∗t−1 +λ1(xt−1−
x∗t−1) + λ2(xt−2 − x∗t−2) + εt. Write this model in terms of only the observed variables y and x, by
eliminating x∗t .What is the type of the resulting model?

Similiar to part b) we first rewrite the AE model:

x∗t = x∗t−1 + λ1(xt−1 − x∗t−1) + λ2(xt−2 − x∗t−2) + εt

x∗t = (1− λ1)x∗t−1 − λ2x
∗
t−2 + λ1xt−1 + λ2xt−2 + εt

x∗t − (1− λ1)x∗t−1 + λ2x
∗
t−2 = +λ1xt−1 + λ2xt−2 + εt

from yt = γ + δx∗t → δx∗t = yt − γ we get the following two substitutions:

−(1− λ1)δx∗t−1 = −(1− λ1)(yt−1 − γ)

and

λ2δx
∗
t−2 = λ2δ(yt−2 − γ)

Using these two terms for the above left side we get:

δ(x∗t − (1− λ1)x∗t−1 + λ2x
∗
t−2) = yt − γ − (1− λ1)(yt−1 − γ) + λ2(yt−2 − γ)

We can simplify the left side as follows:

δ(λ1xt−1 + λ2xt−2 + εt) = yt − γ − (1− λ1)(yt−1 − γ) + λ2(yt−2 − γ)

δλ1xt−1 + δλ2xt−2 + δεt = yt − γ − (1− λ1)yt−1 + (1− λ1)γ + λ2yt−2 − λ2γ

We can rewrite so that:

yt = γ − (1− λ1)γ + λ2γ + (1− λ1)yt−1 − λ2yt−2 + δλ1xt−1 + δλ2xt−2 + δεt

= (λ1 + λ2)γ + (1− λ1)yt−1 − λ2yt−2 + δλ1xt−1 + δλ2xt−2 + δεt

This is an autoregressive distributed lag model (ADL) with AR lag (p=2) and DL lag (r=2). ADL(2,2).
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Evaluation of time series
Now we will see how the empirical modeling cycle works in practice.

After checking for stationarity and taking appropriate actions if the series is found to be non-stationary, you
start with a first guess model. You estimate the parameters and evaluate the obtained model. The tools for
evaluation also provide hints how to modify the initial model.

This modeling cycle usually ends when all diagnostic measures are acceptable, so that you are ready, for
example, to make forecasts. Any application of time series modeling should start with examining whether the
time series is stationary. If not, then the series should be transformed, for example, by taking the difference
until stationarity is achieved.

1. Check for stationarity

• Take difference of time series until stationarity.
• The usual test for stationarity is the Augmented Dickey-Fuller test, which is based on the t-test for rho

in the autoregressive model shown in this equation. Take care that the relevant critical values do not
correspond to the usual ones of the standard normal distribution.

ADF test :
∆yt = α+ βt+ ρyt−1 + γ1∆yt−1 + ...+ γL∆yt−L + εt

Reject H0 : non-stationarity if
tρ̂ < −2.9 if β = 0, tρ̂ < −3.5 if β 6= 0

Once stationarity is obtained, you can apply least squares to obtain estimates of the coefficients of an
autoregression of order p AR(p), or of an autoregressive distributed lag model ADL(p,r), in case you want to
involve another variable x.

OLS in AR(p) [with trend]: yt = α+ [γtt] +
p∑
j=1

βjyt−j + εj

OLS in ADL(p,r) [with trend]: yt = α+ [γtt] +
p∑
j=1

βjyt−j +
r∑
j=1

βjxt−j + εj

Just as in multiple regression, you can apply t-tests and F-tests in the usual way.

2. Check for cointegration

When analyzing two time series x and y jointly, it can occur that they both are non-stationary, but they
share the same stochastic trend, meaning that they are co-integrated. As discussed in the previous section, a
simple test for co-integration is the Engle-Granger two-step method.

This applies an augmented Dickey-Fuller test to the residuals from the regression of y on x. And if this test
indicates that the residuals are stationary, we conclude that x and y are co-integrated.

Engle-Granger test :
Step 1 : OLS in yt = α+ βxt + εt → b and residuals et
Step 2 : Cointegrated if ADF test on et rejects non-stationarity

∆et = α+ βt+ ρet−1 + γ1∆et−1 + ...+ γL∆et−L + wt

Reject H0 : non-stationarity : cointegrated if
Critical Value tρ̂ < −3.4 if β = 0, tρ̂ < −3.8 if β 6= 0
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And if we find co-integration between x and y, you can estimate the parameters in an error correction model
(ECM).

ECM : if xt, yt cointegrated, estimate :

∆yt = α+ βt+ γ0(yt−1 − bxt−1) +
p∑
j=1

γy,j∆yt−j +
r∑
j=1

γx,j∆xt−j + εt

Or with β = 0

This model has a nice economic interpretation. It describes how deviations from the equilibrium between xt
and yt, or errors, at time t− 1 are corrected in the next period. And also here, you can use the t- and F-tests
as usual, as all variables in the model are stationary.

3. Diagnostic tests

Once you have initiated the modeling cycle with tests of stationarity, you can propose a first-guess model which
usually involves a decision on the number of lags. As an autoregression and an autoregressive distributive
lag model basically are multiple regression models, you can use the familiar diagnostic techniques that were
discussed in Model Specification.

These include:

• Choice of lag lengths: BIC
• Stability check: Chow tests
• Normal residuals: Jarque-Bera (Notice critical value: 6.0)
• Out-of-sample forecasting (next section)

As you wish to end up with residuals that have no predictive content, it is crucial to examine if the relevant
past information is properly captured by the model. You can do so by testing if the residuals are uncorrelated
(are white noise).

Two tests for white noise residuals are commonly used:

• A simple test uses the autocorrelations of the residuals. ACF rule-of-thumb: significant if | ACD |>
2/
√
n for 95% confidence level.

Let yt be white noise with variance σ2. The OLS estimator b in yt = α + βyt−1 + εt gives the first-order
autocorrelation of yt:

b =
∑n
t=2(yt − ȳ)((yt−1 − ȳ))∑n

t=2(yt − ȳ)2

V ar(b) = σ2∑n
t=2(yt − ȳ)2 where

n∑
t=2

(yt − ȳ)2 = (n− 1)
∑n
t=2(yt − ȳ)2

(n− 1) ≈ (n− 1)σ2 if n large

V ar(b) ≈ σ2

(n− 1)σ2 = 1
(n− 1) = 1

n

So if n is large, then b ≈ 0 and SE(b) ≈ 1
n

b− 2SE(b) < β < b+ 2SE(b) = − 2
n
< β <

2
n

• Another test is the Breusch-Godfrey test.
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A catch-all test for autocorrelations is the Breusch-Godfrey test. This test amounts to an auxiliary regression
of the residuals on past residuals and on the model variables. And then you take n times the R2 of that
regression. Under the null hypothesis of no autocorrelation, this test has a chi-square distribution with R
degrees of freedom.

1. Estimate model and get residuals et
2. Regress et on all variables of model and r lags of et.
3. BG = nR2 of Step 2, and BG ≈ χ2(r) if et is white noise (H0)

Note that the structure of testing by means of the R squared of a second-step regression closely resembles the
tests of Hausman and Sargan test.

So for example, suppose your first guess model includes one-period lags of yt and xt to predict yt.

yt = α+ βyt−1 + γxt−1 + εt

1. OLS residuals et = yt − a− byt−1 + cxt−1. 2. OLS in et = α+ βyt−1 + γxt−1 + δ1et−1 + δ2et−2 + εt. 3.
As you have two lags, the chi-squared distribution with two degrees of freedom delivers the proper critical
value. BG = nR2 ≈ χ2(2) if et is white noise.

That is, in case nR2 > 6 we reject the null of no autocorrelation, the past still contains some valuable
information that should be exploited by adjusting your model. For example, by adding more lags of y and x.

Example of Revenue Airline

revenue <- read_csv(
"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset61.csv")

revenue$YEAR<- as.Date(paste0(revenue$YEAR, '-01-01'))

Consider again the two series on revenue passenger kilometers for two airlines. Clearly the two times series
show a trending pattern. Note that we have transformed the original series here by taking natural logs, which
makes their trends approximately linear.
plot_a <- ggplot(data=revenue, aes(x=YEAR)) +

geom_line(aes(y=X2,col="log RPK2")) +
geom_line(aes(y=X1,col="log RPK1")) +
labs(x = "", y = "", title = "Log of RPK1 and RPK2",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
plot_a
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On the other hand, the first differences, which here can be interpreted as annual growth rates, seem stationary
because they fluctuate around a constant mean.
plot_b <- ggplot(data=revenue, aes(x=YEAR)) +

geom_line(aes(y=DX1)) +
labs(x = "", y = "", title = "DX1",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw()
plot_c <- ggplot(data=revenue, aes(x=YEAR)) +

geom_line(aes(y=DX2)) +
labs(x = "", y = "", title = "DX2",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw()
grid.arrange(plot_b,plot_c, nrow = 1)
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To save notation, we use yt for the logs of each of the series.

1. Check for stationarity

One of the main R packages for time series modeling is tseries

The R fucntion adf.test() performs the Augmented Dickey-Fuller test for the null hypothesis of a unit root of
a univarate time series x (equivalently, x is a non-stationary time series).
# Set k=1 for the Dickey Fuller test with first lag.
adf.test(revenue$X1,k=1) # contains a unit-root

##
## Augmented Dickey-Fuller Test
##
## data: revenue$X1
## Dickey-Fuller = -2.7644, Lag order = 1, p-value = 0.2729
## alternative hypothesis: stationary
adf.test(revenue$X2,k=1) # contains a unit-root

##
## Augmented Dickey-Fuller Test
##
## data: revenue$X2
## Dickey-Fuller = -1.2074, Lag order = 1, p-value = 0.8853
## alternative hypothesis: stationary

The ur.df() Augmented Dickey-Fuller test in the urca package gives us a bit more information on and control
over the test. he ur.df() function allows us to specify whether to test stationarity around a zero-mean with
no trend, around a non-zero mean with no trend, or around a trend with an intercept. This can be useful
when we know that our data have no trend, for example if you have removed the trend already. ur.df() allows
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us to specify the lags or select them using model selection.

In the ADF test equation, we include a constant (α), a deterministic trend term βt, and a single lag of ∆X1t
# Set k=1 for the Dickey Fuller test with first lag.
test <- urca::ur.df(na.omit(revenue$X1), type = "trend", lags = 1)
summary(test)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.019123 -0.006006 -0.001421 0.004739 0.022106
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4704469 0.1682887 2.795 0.00836 **
## z.lag.1 -0.1814847 0.0656510 -2.764 0.00904 **
## tt 0.0025452 0.0009043 2.815 0.00796 **
## z.diff.lag 0.7606219 0.1342284 5.667 2.12e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01036 on 35 degrees of freedom
## Multiple R-squared: 0.5137, Adjusted R-squared: 0.472
## F-statistic: 12.32 on 3 and 35 DF, p-value: 1.174e-05
##
##
## Value of test-statistic is: -2.7644 5.2777 3.962
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61
# The intercept and tt estimates indicate where there is a non-zero level (intercept) or linear trend (tt)

∆X1,t = α+ βt+ ρX1,t−1 + γ∆X1,t−1 + εt

Here we can see that ρ̂ = −0.181 with SE = 0.065 and the value of ADF test-statistic is: -2.7644.

We do the same for ∆X2,t = α+ βt+ ρX12t−1 + γ∆X2,t−1 + εt

# Set k=1 for the Dickey Fuller test with first lag.
test <- urca::ur.df(na.omit(revenue$X2), type = "trend", lags = 1)
summary(test)
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##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.035897 -0.004838 -0.000094 0.004530 0.029455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.363125 0.294549 1.233 0.226
## z.lag.1 -0.150500 0.124649 -1.207 0.235
## tt 0.002214 0.001627 1.361 0.182
## z.diff.lag 0.187349 0.185459 1.010 0.319
##
## Residual standard error: 0.01206 on 35 degrees of freedom
## Multiple R-squared: 0.1154, Adjusted R-squared: 0.03958
## F-statistic: 1.522 on 3 and 35 DF, p-value: 0.2259
##
##
## Value of test-statistic is: -1.2074 7.0053 1.8301
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61
# The intercept and tt estimates indicate where there is a non-zero level (intercept) or linear trend (tt)

Here we can see that ρ̂ = −0.150 with SE = 0.124 and the value of ADF test-statistic is: -1.207.

In summary:

• Let yt denote log(RPK), for X1t and X2t with a trend βt 6= 0 noticed by visual inspection:
• ADF: ∆yt = α+ βt+ ρyt−1 + γ∆yt−1 + εt
• t-value of ρ̂: t = −2.7644 for X1t and t = −1.025 for X2t

As both ADF t values are larger than the critical value -3.5 X1 and X2 are not stationary.

Now let’s test the first difference DX1 and DX2
# Set k=1 for the Augmented Dickey Fuller test with 1 lag.
# Notice that adf.test does not take NA values
adf.test(na.omit(revenue$DX1),k=1) # stationary

##
## Augmented Dickey-Fuller Test
##
## data: na.omit(revenue$DX1)
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## Dickey-Fuller = -3.3213, Lag order = 1, p-value = 0.08298
## alternative hypothesis: stationary
adf.test(na.omit(revenue$DX2),k=1) # stationary

##
## Augmented Dickey-Fuller Test
##
## data: na.omit(revenue$DX2)
## Dickey-Fuller = -4.032, Lag order = 1, p-value = 0.01854
## alternative hypothesis: stationary

When we analyze the growth rates, there is no reason to add any deterministic trend in the test regression.

• Let yt denote either ∆X1 or ∆X2 with NO trend βt = 0 noticed by visual inspection.
• ADF: ∆yt = α+ ρyt−1 + γ∆yt−1 + εt
• t-value of ρ̂: t = −3.301 for X1t and t = −3.705 for X2t

And now, the t-ratios in the Dickey-Fuller test become t∆X1 = −− 3.301 and t∆X2 = −3.705, respectively.

As both t values are smaller than the critical value -2.9, DX1 and DX2 are both stationary.

2. Check for causality

Next, we investigate if the two series are mutually linked. For that purpose we estimate two autoregressive
distributed lag models, one for the growth rates of X1 (DX1) and the other for those of X2 (DX2).

We include two lags of each, and in the table you see the estimated coefficients, their t-statistics and the
associated p-values.

We estimate the two following regressions:

∆X1,t = α+β1∆X1,t−1+β2∆X1,t−2+γ1∆X2,t−1+γ2∆X1,t−2+εt∆X2,t = α+β1∆X1,t−1+β2∆X1,t−2+γ1∆X2,t−1+γ2∆X1,t−2+εt

lm1 <- lm(DX1 ~ lag(DX1,1) + lag(DX1,2) + lag(DX2,1) + lag(DX2,2), data=revenue)
lm2 <- lm(DX2 ~ lag(DX1,1) + lag(DX1,2) + lag(DX2,1) + lag(DX2,2), data=revenue)
summ(lm1,digits = 2)

Observations 38 (3 missing obs. deleted)
Dependent variable DX1
Type OLS linear regression

F(4,33) 7.51
R2 0.48
Adj. R2 0.41

Est. S.E. t val. p
(Intercept) 0.01 0.00 1.84 0.07
lag(DX1, 1) 0.87 0.18 4.96 0.00
lag(DX1, 2) -0.42 0.21 -2.02 0.05
lag(DX2, 1) 0.35 0.20 1.74 0.09
lag(DX2, 2) -0.19 0.15 -1.27 0.21

Standard errors: OLS
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summ(lm2,digits = 2)

Observations 38 (3 missing obs. deleted)
Dependent variable DX2
Type OLS linear regression

F(4,33) 10.89
R2 0.57
Adj. R2 0.52

Est. S.E. t val. p
(Intercept) 0.01 0.00 2.86 0.01
lag(DX1, 1) 0.18 0.14 1.29 0.21
lag(DX1, 2) 0.61 0.17 3.68 0.00
lag(DX2, 1) -0.29 0.16 -1.81 0.08
lag(DX2, 2) -0.13 0.12 -1.05 0.30

Standard errors: OLS

For ∆X1,t = α+ β1∆X1,t−1 + β2∆X1,t−2 + γ1∆X2,t−1 + γ2∆X1,t−2 + εt we have:

The null hypothesis that H0 : ∆X2,t is not Granger causal for ∆X1,t, that is H0 : γ1 = γ2 = 0

We can see from the results for the first regression that the p-values for the coefficients for lags of ∆X2,t
tγ1 = 1.74 and tγ2 = −1.27.

For a joint test (F-test) F = (R2
1−R

2
0)/g

(1−R2
1)/(n−k) ∼ F(g,n−k) so we need to model under the null H0 : γ1 = γ2 = 0→

∆X1,t = α+ β1∆X1,t−1 + β2∆X1,t−2 + εt.

The value of g = 2 n = 38 because we start with 40 observations minus 2 lost due to the two lags in the
model. And R2

1 = 0.476, R2
0 = 0.476

lm0 <- lm(DX1 ~ lag(DX1,1) + lag(DX1,2), data=revenue) # Restricted mode
lm1 <- lm(DX1 ~ lag(DX1,1) + lag(DX1,2) + lag(DX2,1) + lag(DX2,2), data=revenue) # Unrestricted model
# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 2.15"
print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 3.285"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}
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## [1] "We do not reject H_0 at 0.95%"

There’s no indication that DX2 is granger causal for DX1

Now we do the same for ∆X2,t in the model ∆X2,t = α+β1∆X1,t−1+β2∆X1,t−2+γ1∆X2,t−1+γ2∆X1,t−2+εt.

The null hypothesis that H0 : ∆X1,t is not Granger causal for ∆X2,t, that is H0 : β1 = β2 = 0
lm0 <- lm(DX2 ~ lag(DX2,1) + lag(DX2,2), data=revenue) # Restricted mode
lm1 <- lm(DX2 ~ lag(DX1,1) + lag(DX1,2) + lag(DX2,1) + lag(DX2,2), data=revenue) # Unrestricted model
# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 20.978"
print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 3.285"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}

## [1] "We reject H_0 at 0.95% in favor of H_1"

There’s evidence that DX1 is granger causal for DX2

Clearly, growth rates of X1 (DX1) can be predicted by their own past, and some of that past is also informative
for DX2. So airline one is Granger causal for airline two, but not the other way around. And
note that you need formal tests to establish this result, as the graphs are in no way informative in this respect.

2. Check for cointegration

Next, let us investigate whether the two series are cointegrated. The linear regression of X2 on X1 gives the
candidate long-run equilibrium relation with a slope coefficient of 0.92.
lm3 <- lm(X2 ~ X1, data=revenue)
summ(lm3, digits = 2)

Observations 41
Dependent variable X2
Type OLS linear regression

F(1,39) 2777.98
R2 0.99
Adj. R2 0.99

Step 1 OLS : X2,t = 0.01 + 0.92X1,t + et
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Est. S.E. t val. p
(Intercept) 0.01 0.05 0.23 0.82
X1 0.92 0.02 52.71 0.00

Standard errors: OLS

# We add the residuals of lm3 into the dataset
revenue <- revenue %>% mutate(lm3.res = resid(lm3))
# Perform ADF on the residuals.
# Set k=0 for the Dickey Fuller test.
test <- urca::ur.df(na.omit(revenue$lm3.res), type = "none", lags = 1)
summary(test)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.031330 -0.010599 0.000282 0.010458 0.033622
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.4962 0.1394 -3.558 0.00104 **
## z.diff.lag 0.3043 0.1637 1.859 0.07104 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01456 on 37 degrees of freedom
## Multiple R-squared: 0.2556, Adjusted R-squared: 0.2154
## F-statistic: 6.353 on 2 and 37 DF, p-value: 0.004249
##
##
## Value of test-statistic is: -3.5583
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.62 -1.95 -1.61
# The intercept and tt estimates indicate where there is a non-zero level (intercept) or linear trend (tt)

Step 2 ADF : ∆et = 0.00− 0.50et−1 + 0.30∆et−1 + rest

The ADF test is based on the estimate of −0.50 for the coefficient of e in period t − 1 in the relevant
auxiliary regression. And it equals t = −3.558. And as this is smaller than the 5% critical value −3.4, we can
conclude that the residuals from the regression in step one are stationary. And thus, that X1 and X2
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are co-integrated.

As the t value is smaller than the critical value -3.4, e_t are stationary so X1 and X2 are
co-integrated.

When we now include the error correction term in the model for the growth rates of X1, we get an
adjustment parameter of 0.46. And when we include it in the model for the growth rates of X2, we get −0.45.

• ECM (after removing insignificant coefficients) and susbtituing Step 1 OLS removing insignificant coefficients: X2,t =
0.92X1,t.

∆X1,t = 0.00+1.02∆X1,t−1 +0.46(X2,t−1−0.92X1,t−1)+e1,t∆X2,t = 0.02−0.45(X2,t−1−0.92X1,t−1)+e2,t

The signs of these parameters imply that X1 and X2 cannot deviate too much from their equilibrium. For
example, suppose that there is a positive deviation in period t− 1. This will have an increasing effect on X1t
in period t and a decreasing effect on X2t. And as a result, the deviation from equilibrium is expected to
decline in period t. Note also that deviations from the equilibrium are corrected by changes in both X1t and
X2t

If Dt−1 = X2,t−1 − 0.92X1,t−1 ≥ 0 is positive, then
0.46 > 0→ X1,t ↑→ Dt = X2,t−1 − 0.92X1,t−1 ↓
−0.45 < 0→ X2,t ↓→ Dt = X2,t−1 − 0.92X1,t−1 ↓
Error correction mechanism acts on both variables

3. ECM: Check for serial correlation and normality

Let us finally employ diagnostic tests on the residual autocorrelation and normality. The error correction
models were as follows.
ecm1 <- lm(DX1 ~ lag(DX1,1) + I(lag(X2,1)-0.92*lag(X1,1)), data=revenue)
ecm2 <- lm(DX2 ~ I(lag(X2,1)-0.92*lag(X1,1)), data=revenue)
summ(ecm1, digits = 3)

Observations 39 (2 missing obs. deleted)
Dependent variable DX1
Type OLS linear regression

F(2,36) 27.938
R2 0.608
Adj. R2 0.586

Est. S.E. t val. p
(Intercept) -0.004 0.003 -1.240 0.223
lag(DX1, 1) 1.022 0.138 7.403 0.000
I(lag(X2, 1) - 0.92 * lag(X1, 1)) 0.463 0.107 4.335 0.000

Standard errors: OLS

summ(ecm2, digits = 3)

• ECM models for log(RPK) of airline companies 1 and 2 (n = 39):
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Observations 40 (1 missing obs. deleted)
Dependent variable DX2
Type OLS linear regression

F(1,38) 33.604
R2 0.469
Adj. R2 0.455

Est. S.E. t val. p
(Intercept) 0.018 0.002 11.285 0.000
I(lag(X2, 1) - 0.92 * lag(X1, 1)) -0.447 0.077 -5.797 0.000

Standard errors: OLS

∆X1,t = 0.00+1.02∆X1,t−1 +0.46(X2,t−1−0.92X1,t−1)+e1,t∆X2,t = 0.02−0.45(X2,t−1−0.92X1,t−1)+e2,t

The Jarque-Bera test statistics for normality show that normality of the residuals is not rejected for both X1
and X2. And also the Breusch-Godfrey test values for first-order residual autocorrelation are not significant.
# Null of normality
jarque.bera.test(ecm1$residuals) # Null: Normality not rejected

##
## Jarque Bera Test
##
## data: ecm1$residuals
## X-squared = 0.38543, df = 2, p-value = 0.8247
jarque.bera.test(ecm2$residuals) # Null: Normality not rejected

##
## Jarque Bera Test
##
## data: ecm2$residuals
## X-squared = 1.8226, df = 2, p-value = 0.402

Jarque-Bera test : JB1 = 0.38 < 6, JB2 = 1.82 < 6. Normality not rejected

The function bgtest performs the Breusch-Godfrey test for higher-order serial correlation.

Under the null hypothesis of no autocorrelation, this test has a chi-square distribution with R degrees of
freedom
bgtest(ecm1, order = 1) # Null: No autocorrelation not rejected

##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: ecm1
## LM test = 0.29898, df = 1, p-value = 0.5845
bgtest(ecm2, order = 1) # Null: No autocorrelation not rejected

##
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## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: ecm2
## LM test = 1.2399, df = 1, p-value = 0.2655

Breusch-Godfrey test (1 lag) : BG1 = 0.29 < 3.9, BG2 = 1.23 < 3.9 No autocorrelation

ACF : 2/
√
n = 2/

√
39 = 0.32

The absence of such correlation is also visible from the sample autocorrelations of the residuals shown in this
graph. Only 1 out of the 20 autocorrelations is outside the 95% confidence bound, and this is not unusual for
a test with significance level 5%
par(mfrow=c(1,2))
Acf(ecm1$residuals,main = "ACF of e1")
Acf(ecm2$residuals,main = "ACF of e2")
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Application on Production and CLI
Look at Dates and Times in R Without Losing Your Sanity to understand how to use correctly date labes in
R.

Datasets to be used:
production <- read_csv(

"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset62.csv")
# We replace the weird "M" before months.
production <- rename(production, date=`YYYY-MM`)
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production$date <- gsub("M","-",production$date)
production$date <- as.Date(as.yearmon(production$date))

• production Data set on Industrial Production and the Composite Leading Index for the USA, monthly
data Jan 1985 - Dec 2007 (Source: Conference Board, USA). Estimation period is Jan 1986 to Dec
2005 (pre sample values in 1985). Forecast evaluation period is Jan 2006 to Dec 2007.

• production_train Data set on Industrial Production and the Composite Leading Index for the USA,
yearly data 1960 to 2007 (Source: Conference Board, USA). Estimation period is 1960 to 2002. Forecast
evaluation period is 2003 to 2007.

• CLI: Composite Leading Index (based on 10 leading indicators)

• IP: Industrial Production (index, seasonally adjusted)

• LOGCLI: logarithm of CLI

• LOGIP: logarithm of IP

• GRCLI: monthly growth rate of CLI,first difference of LOGCLI

• GRIP: monthly growth rate of IP,first difference of LOGIP

In this section we will see a detailed application of the various techniques outlined in the previous four
sections. The two time series of interest are the monthly industrial production index for the United States
of America and the so-called Composite Leading Index or CLI. The CLI is constructed by The Conference
Board based on a set of variables like manufacturers’ new orders and consumer expectations.

All these variables are forward looking and therefore, they are believed to have predictive value for future
macro-economic developments. Here we will investigate whether this index does indeed have predictive power
for industrial production. The sample runs from 1986 to 2007, such that we have 264 monthly observations.
When needed for models with lags the values for 1985 are also available.

Graphical analysis

As you can see from these graphs, the two time series show an upward trend.
plot_a <- ggplot(data=production, aes(x=date)) +

geom_line(aes(y=IP,col="IP")) +
geom_line(aes(y=CLI,col="CLI")) +
labs(x = "", y = "", title = "Levels",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_b <- ggplot(data=production, aes(x=date)) +
geom_line(aes(y=LOGIP,col="log(IP)")) +
geom_line(aes(y=LOGCLI,col="log(CLI)")) +
labs(x = "", y = "", title = "Logarithm",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +
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scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_a, plot_b, nrow = 1)
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At first glance, the series also seem to obey roughly similar cyclical behavior, which in this case can be
associated with the business cycle. If you examine the two series in detail, you may observe that the turning
points in this cycle occur earlier in the CLI than in industrial production. And this is exactly the feature
that leads to the idea that the CLI may have relevant information for predicting industrial production.

Here we specifically examine if we can forecast industrial production three months ahead. Not only from its
own past, but also from the past of the leading index.

Let us consider what the monthly growth rates look like. GRIP = ∆log(IP ) GRCLI = ∆log(CLI) We will
use the acronym GRIP for the monthly growth rate of industrial production, which is the variable we wish to
predict.
plot_c <- ggplot(data=production, aes(x=date)) +

geom_line(aes(y=GRIP,col="IP")) +
geom_line(aes(y=0)) +
labs(x = "", y = "", title = "Growth Rate IP",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .10),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_d <- ggplot(data=production, aes(x=date)) +
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geom_line(aes(y=GRCLI,col="log(IP)")) +
geom_line(aes(y=0)) +
labs(x = "", y = "", title = "Growth Rate CLI",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .10),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_c, plot_d, nrow = 1)
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Separate data set

We take the period from 1986 until 2005 as our estimation sample so that 240 observations are available for
estimation. And, we then use the 24 months in 2006 and 2007 as a holdout sample to evaluate our forecasts.

We filter with date data
estimation <- production %>% filter(date > as.Date("1985-12-01") & date <= as.Date("2005-12-01"))
forecast <- production %>% filter(date > as.Date("2005-12-01"))

Test unit root

As always, we start with a test for stationarity, where we use yt to denote each of the variables. The augmented
Dickey-Fuller test equation should include a deterministic trend, as the log data obviously have a trend. In
the test equation, we also include three lags of the differenced variable to capture the autocorrelation in the
time series.
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ADF test :

∆yt = α+ βt+ ρyt−1 +
3∑
j=1

γj∆yt−j + εt

Reject H0 : non-stationarity if
tρ̂ < −2.9 if β = 0, tρ̂ < −3.5 if β 6= 0

# Set k=1 for the Dickey Fuller test with first lag and type 'trend'
test_logip <- urca::ur.df(na.omit(estimation$LOGIP), type = "trend", lags = 3)
summary(test_logip)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0207678 -0.0033392 0.0001451 0.0030167 0.0196143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.314e-02 3.211e-02 1.655 0.099324 .
## z.lag.1 -1.254e-02 7.824e-03 -1.603 0.110308
## tt 3.015e-05 2.079e-05 1.450 0.148416
## z.diff.lag1 1.817e-02 6.394e-02 0.284 0.776582
## z.diff.lag2 2.128e-01 6.263e-02 3.397 0.000802 ***
## z.diff.lag3 2.376e-01 6.419e-02 3.701 0.000268 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005031 on 230 degrees of freedom
## Multiple R-squared: 0.1149, Adjusted R-squared: 0.09565
## F-statistic: 5.971 on 5 and 230 DF, p-value: 3.249e-05
##
##
## Value of test-statistic is: -1.603 5.0484 1.3956
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
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test_logcli <- urca::ur.df(na.omit(estimation$LOGCLI), type = "trend", lags = 3)
summary(test_logcli)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0158400 -0.0027337 -0.0000552 0.0027129 0.0136335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.478e-02 4.051e-02 1.846 0.06617 .
## z.lag.1 -1.840e-02 1.011e-02 -1.820 0.07011 .
## tt 5.112e-05 2.587e-05 1.976 0.04933 *
## z.diff.lag1 9.049e-02 6.544e-02 1.383 0.16806
## z.diff.lag2 1.869e-01 6.485e-02 2.881 0.00434 **
## z.diff.lag3 8.929e-02 6.599e-02 1.353 0.17735
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00486 on 230 degrees of freedom
## Multiple R-squared: 0.07583, Adjusted R-squared: 0.05574
## F-statistic: 3.774 on 5 and 230 DF, p-value: 0.002645
##
##
## Value of test-statistic is: -1.8197 7.0627 2.1865
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47

The t-ratios of the coefficient tρ̂ = −1.603 for log(IP) and tρ̂ = −1.8197 for log(CLI) in the augmented
Dickey-Fuller regression are both larger than the 5% critical value −3.5.

And hence, not surprisingly, the test confirms that the log series are not stationary.

Running the same auxiliary test regression for the growth rates, now without including a deterministic trend,
gives two significant test statistics. And hence, the monthly growth rates are indeed stationary.
# Set k=1 for the Dickey Fuller test with first lag.
adf.test(estimation$GRIP,k=3)

##
## Augmented Dickey-Fuller Test
##
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## data: estimation$GRIP
## Dickey-Fuller = -5.228, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
adf.test(estimation$GRCLI,k=3)

##
## Augmented Dickey-Fuller Test
##
## data: estimation$GRCLI
## Dickey-Fuller = -5.5533, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary

The t-ratios of the coefficient tρ̂ = −5.228 for GRIP and tρ̂ = −5.553 for GRCLI in the augmented
Dickey-Fuller regression are both smaller than the 5% critical value −2.9.

And hence, the monthly growth rates are indeed stationary.

Test for cointegration

Are the two series perhaps, cointegrated?
step1 <- lm(LOGIP ~ LOGCLI, data=estimation)
summ(step1, digits = 3)

Observations 240
Dependent variable LOGIP
Type OLS linear regression

F(1,238) 4540.570
R2 0.950
Adj. R2 0.950

Est. S.E. t val. p
(Intercept) 0.083 0.064 1.288 0.199
LOGCLI 1.005 0.015 67.384 0.000

Standard errors: OLS

Step 1 OLS : log(IP ) = 0.083 + 1.005log(CLI) + et

Well, a potential long run relation ties the two series with the parameter close to 1.
# We add the residuals of step 1 into the dataset
estimation <- estimation %>% mutate(step1.res = resid(step1))
# Perform ADF on the residuals.
test <- urca::ur.df(estimation$step1.res, type = "none", lags = 1)
summary(test)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
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##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0191612 -0.0035949 0.0001314 0.0034891 0.0189884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.006836 0.009528 -0.717 0.474
## z.diff.lag 0.048331 0.065162 0.742 0.459
##
## Residual standard error: 0.005955 on 236 degrees of freedom
## Multiple R-squared: 0.004036, Adjusted R-squared: -0.004405
## F-statistic: 0.4781 on 2 and 236 DF, p-value: 0.6205
##
##
## Value of test-statistic is: -0.7174
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62

Step 2 ADF : ∆et = 0.00− 0.0068et−1 + 0.048∆et−1 + rest

But in the second step of the Engle-Granger procedure, we find that the relevant parameter is estimated
as -0.01 with a t-ratio t = −0.717 larger than the critical value −3.8, implying that the two series are not
cointegrated.

The t value is larger than the critical, implying that the two series are not cointegrated.

So based on this analysis of known stationarity and cointegration, from now on, we will only consider the
monthly growth rates.

Especify the model

The scatter diagrams with regression lines, suggest that GRIP can be predicted by the growth rates of the
leading index three months ago. But the left hand graph also suggests that GRIP can be predicted by its
own past.
plot_a <- ggplot(data=estimation, aes(x=lag(GRIP,3),y=GRIP)) + geom_point() + geom_smooth(method='lm') +

labs(title="GRIP Predicted by 3 GRIP own lags") + theme_bw()
plot_b <- ggplot(data=estimation, aes(x=lag(GRCLI,3),y=GRIP)) + geom_point() + geom_smooth(method='lm') +

labs(title="GRIP Predicted by 3 GRCLI lags") + theme_bw()
grid.arrange(plot_a, plot_b, nrow = 1)
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Because we wish to forecast three months ahead, only the lags of order three and larger are allowed in the
models we are going to consider.

• Forecast GRIPt with information GRIPt−j , j = 3, 4, 5, ..

We will design two models. First, an univariate autoregression for GRIP, and second an autoregressive
distributed lag model that also includes lagged CLI growth rates.

Especify AR(p)

First, we specify the autoregressive model for GRIP.

To get a hint of the appropriate number of lags, we compute the autocorrelations and partial autocorrelations
up to lag 12.

Their values are shown in these two graphs.
# We create the time series object
par(mfrow=c(1,2))
Acf(estimation$GRIP,main = "ACF of GRIP", lag.max = 12)
Pacf(estimation$GRIP,main = "PACF of GRIP", lag.max = 12)
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The 95% confidence bounds are equal to plus and minus 0.13. And a first impression is that an AR(3) model
may be useful. This is based on the significance of the partial autocorrelations up to order 3.

2/
√
n = 0.13 −→ AR(3)

As GRIPt−1, GRIPt−2 may not be used, start with lags 3-12 and reduce (down-testing).

As our model may not use lags 1 and 2, we start with an autoregression that contains all lags from 3 to 12.
And then, we delete lag terms that are not significant.

GRIPt = α+
L∑
j=3

βjGRIPt−j + εt

dynlm(GRIP ~ lag(GRIP,1), data=estimation)

##
## Time series regression with "numeric" data:
## Start = 1, End = 239
##
## Call:
## dynlm(formula = GRIP ~ lag(GRIP, 1), data = estimation)
##
## Coefficients:
## (Intercept) lag(GRIP, 1)
## 0.002119 0.091785

Downtesting in R dynlm function

The function dynlm() does not compute information criteria by default. We will therefore write a short
function that reports the BIC (along with the chosen lag order p and R2) for objects of class dynlm.
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ar12 <- lm(GRIP ~ lag(GRIP,3)+lag(GRIP,4)+lag(GRIP,5)+lag(GRIP,6)+lag(GRIP,7)+
lag(GRIP,8)+lag(GRIP,9)+lag(GRIP,10)+lag(GRIP,11)+lag(GRIP,12), data=estimation)

summ(ar12,digits = 3)

Observations 228 (12 missing obs. deleted)
Dependent variable GRIP
Type OLS linear regression

F(10,217) 2.950
R2 0.120
Adj. R2 0.079

Est. S.E. t val. p
(Intercept) 0.001 0.000 2.756 0.006
lag(GRIP, 3) 0.206 0.070 2.951 0.004
lag(GRIP, 4) 0.084 0.072 1.171 0.243
lag(GRIP, 5) 0.087 0.074 1.177 0.240
lag(GRIP, 6) 0.037 0.075 0.498 0.619
lag(GRIP, 7) -0.169 0.076 -2.233 0.027
lag(GRIP, 8) 0.050 0.075 0.656 0.512
lag(GRIP, 9) 0.132 0.076 1.747 0.082
lag(GRIP, 10) 0.080 0.074 1.089 0.277
lag(GRIP, 11) -0.098 0.071 -1.374 0.171
lag(GRIP, 12) 0.052 0.072 0.722 0.471

Standard errors: OLS

• Start with L = 12: lags 4-12 individually not significant. They may, however, be jointly significant.
ar3 <- lm(GRIP ~ lag(GRIP,3), data=estimation)
summ(ar3,digits = 3)

Observations 237 (3 missing obs. deleted)
Dependent variable GRIP
Type OLS linear regression

F(1,235) 15.274
R2 0.061
Adj. R2 0.057

Est. S.E. t val. p
(Intercept) 0.002 0.000 5.118 0.000
lag(GRIP, 3) 0.247 0.063 3.908 0.000

Standard errors: OLS

Is a model with only lag three to be preferred over a model with lags three to 12? We use the familiar F-test.
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lm0 <- lm(GRIP ~ lag(GRIP,3), data=estimation) # Restricted mode
lm1 <- lm(GRIP ~ lag(GRIP,3)+lag(GRIP,4)+lag(GRIP,5)+lag(GRIP,6)+lag(GRIP,7)+

lag(GRIP,8)+lag(GRIP,9)+lag(GRIP,10)+lag(GRIP,11)+lag(GRIP,12)
, data=estimation) # Unrestricted model

# H0 the restrictions hold true
# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 1.607"
print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 1.923"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}

## [1] "We do not reject H_0 at 0.95%"

The test value that we obtain is 1.6, and hence, we can stick to just using lag 3 only.

As always, it is good to have a look at the residuals to see if there are any odd values.
# We add the residuals into the dataset (notice we need 3 NA values due to the 3 lags used)
estimation <- estimation %>% mutate(ar12.res = c(rep(NA,12),resid(ar12)))
estimation <- estimation %>% mutate(ar3.res = c(rep(NA,3),resid(ar3)))

In this scatter of the residuals of the model with 12 lags versus those with the model with three lags, we see
that the residuals are very similar.
plot_c <- ggplot(data=estimation, aes(x=ar3.res,y=ar12.res)) + geom_point() +

labs(x="Residuals AR(3)",y="Residuals AR(12)",title="") + theme_bw()
plot_c
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This is confirmed by the almost same p-values of the diagnostic tests on the residual autocorrelation and on
normality.
# Null of normality
jarque.bera.test(na.omit(estimation$ar12.res))

##
## Jarque Bera Test
##
## data: na.omit(estimation$ar12.res)
## X-squared = 7.8058, df = 2, p-value = 0.02018
jarque.bera.test(na.omit(estimation$ar3.res))

##
## Jarque Bera Test
##
## data: na.omit(estimation$ar3.res)
## X-squared = 11.022, df = 2, p-value = 0.004042

Normality is rejected for both models, which is due to a few extreme observations.
bgtest(ar12, order = 6) # Null: No autocorrelation

##
## Breusch-Godfrey test for serial correlation of order up to 6
##
## data: ar12
## LM test = 9.9107, df = 6, p-value = 0.1285
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bgtest(ar3, order = 6) # Null: No autocorrelation

##
## Breusch-Godfrey test for serial correlation of order up to 6
##
## data: ar3
## LM test = 12.719, df = 6, p-value = 0.04772

No residual autocorrelation for the AR(3) model is rejected.

This can also be visualized by drawing a scatter of the residuals against the GRIP variable itself, and indeed
when GRIP is large positive or large negative the residuals are large too.
plot_a <- ggplot(data=estimation, aes(x=GRIP,y=ar12.res)) + geom_point() +

labs(x="GRIP",y="Residuals AR(12)",title="") + theme_bw()
plot_b <- ggplot(data=estimation, aes(x=GRIP,y=ar3.res)) + geom_point() +

labs(x="GRIP",y="Residuals AR(3)",title="") + theme_bw()
grid.arrange(plot_a, plot_b, nrow = 1)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02
GRIP

R
es

id
ua

ls
 A

R
(1

2)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02
GRIP

R
es

id
ua

ls
 A

R
(3

)

It seems that there four such large residuals in this case. It seems that there four such large residuals in
this case. They associate with four isolated observations, for months with exceptionally positive or negative
growth.

• High growth: Feb 1996 (1.7%) and Aug 1998 (2.1%)
• Large negative growth: Nov 1990 (-1.2%) and Sep 2005 (-1.8%)

As we do not see any particular strategy to deal with these four outliers, we simply proceed with our
autoregressive model, where the estimated lag 3 parameter is statistically significant.

Forecast model 1 : GRIPt = 0.002 + 0.247 ·GRIPt−3 + et(tb = 3.9, R2 = 0.061)
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Especify ADL(p,r)

The next question is, can this univariate model be improved by adding the Composite Leading Index? That
is, is the variable CLI really leading, and if so, with how many lags?

To find out, we consider the autoregressive distributed lag model ALD(p,r), with p lags for GRIP and r lags
for the leading index. Where we again start with lag three, as we wish to forecast three months ahead.

ADL(p,r) : GRIPt = α+
p∑
j=3

βjGRIPt−j +
r∑
j=3

γjGRICLt−j + εt

Our modeling cycle starts with p and r both equal to 6 and reduce (down-testing).
Our modeling cycle starts with p and r both equal to 6. And we work our way downwards by deleting
insignificant lags.
adl66 <- lm(GRIP ~ lag(GRIP,3)+lag(GRIP,4)+lag(GRIP,5)+lag(GRIP,6)+lag(GRCLI,3)+

lag(GRCLI,4)+lag(GRCLI,5)+lag(GRCLI,6), data=estimation)
summ(adl66,digits = 3)

Observations 234 (6 missing obs. deleted)
Dependent variable GRIP
Type OLS linear regression

F(8,225) 4.311
R2 0.133
Adj. R2 0.102

Est. S.E. t val. p
(Intercept) 0.001 0.000 1.911 0.057
lag(GRIP, 3) 0.137 0.075 1.817 0.070
lag(GRIP, 4) -0.044 0.074 -0.594 0.553
lag(GRIP, 5) 0.068 0.069 0.977 0.329
lag(GRIP, 6) 0.074 0.072 1.034 0.302
lag(GRCLI, 3) 0.103 0.072 1.435 0.153
lag(GRCLI, 4) 0.136 0.072 1.891 0.060
lag(GRCLI, 5) -0.028 0.075 -0.367 0.714
lag(GRCLI, 6) 0.195 0.075 2.592 0.010

Standard errors: OLS

When we do so, we arrive at a model with lag three of GRIP and lag six of the growth rate of the leading
index.
adl36 <- lm(GRIP ~ lag(GRIP,3)+lag(GRCLI,6), data=estimation)
# We add the residuals into the dataset (notice we need 6 NA values due to the max(p,r))
estimation <- estimation %>% mutate(adl36.res = c(rep(NA,6),resid(adl36)))
summ(adl36,digits = 3)

Observations 234 (6 missing obs. deleted)
Dependent variable GRIP
Type OLS linear regression
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F(2,231) 13.766
R2 0.106
Adj. R2 0.099

Est. S.E. t val. p
(Intercept) 0.001 0.000 3.521 0.001
lag(GRIP, 3) 0.204 0.064 3.182 0.002
lag(GRCLI, 6) 0.238 0.068 3.500 0.001

Standard errors: OLS

# Null of normality
jarque.bera.test(na.omit(estimation$adl36.res))

##
## Jarque Bera Test
##
## data: na.omit(estimation$adl36.res)
## X-squared = 7.1705, df = 2, p-value = 0.02773
# Null: No autocorrelation
bgtest(adl36, order = 6)

##
## Breusch-Godfrey test for serial correlation of order up to 6
##
## data: adl36
## LM test = 7.5787, df = 6, p-value = 0.2706

• Breusch-Godfrey (6 lags): p− value = 0.27, no serial correlation
• Jarque-Bera p− value = 0.027 (same 4 outliers as before)

Forecast model 2 : GRIPt = 0.001+0.204·GRIPt−3+0.238·GRCLIt−6+et(tb3 = 3.2, tb6 = 3.5, R2 = 0.106)

The associated coefficient is significant so we can conclude that, at least in-sample, the index is leading
industrial production. Note that the inclusion of the leading index makes the residual autocorrelation that
we had in the AR(3) model to disappear. However, the four outliers are still there, such that normality of the
residuals is still rejected.

Out sample forecast

Now let us see whether the in-sample success also carries on to the out-of-sample period.

We use our model each month to forecast IP three months ahead, starting in October 2005 to forecast January
2006, and ending in September 2007 to forecast December 2007. And that gives us two series of 24 forecasts
each, which we put here together with the actual monthly growth rates.

• AR (lag 3) ar3 and ADL (lags 3 and 6) adl36 estimated from data 1986-2005

• Forecast monthly GRIP for Jan 2006 - Dec 2007 (n = 24) and the annual growth rates of IP for the
years 2006 and 2007.

Customize date ranges
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# We add the fitted values of both models to the forecast dataset
forecast <- forecast %>% mutate(ar3_fitted=predict(ar3,newdata = forecast))
forecast <- forecast %>% mutate(adl36_fitted=predict(adl36,newdata = forecast))

# Define Start and end times for the subset as R objects that are the time class
startTime <- as.Date("2006-04-01")
endTime <- as.Date("2007-12-01")
# create a start and end time R object
start.end <- c(startTime,endTime)

forecast_plot <- ggplot(data=forecast, aes(x=date)) +
geom_line(aes(y=GRIP,col="Actual GRIP")) + geom_point(aes(y=GRIP,col="Actual GRIP")) +
geom_line(aes(y=ar3_fitted,col="Forecast AR(3)")) + geom_point(aes(y=ar3_fitted,col="Forecast AR(3)")) +
geom_line(aes(y=adl36_fitted,col="Forecast ADL(3,6)")) + geom_point(aes(y=adl36_fitted,col="Forecast ADL(3,6)")) +
labs(x = "", y = "", title = "Forecast monthly GRIP for Jan 2006 - Dec 2007 (n = 24)",

subtitle = ("")) +
scale_x_date(limits = start.end, date_labels = "%m-%Y",date_breaks = "1 month") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.15, .15),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

forecast_plot
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You can see that even though the difference between the two models is just a single variable, the forecast can
be quite different. And you can also observe that the actual growth rates fluctuate considerably per month.
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So far, we considered the monthly growth rates. But for longer term decisions, one is often interested in the
annual growth rates. That is, the growth rate of IP as measured from January to December.

Montly growth rate of y : gmt = ∆log(yt) Annual growth rate of y : gyt = log(yt)− log(yt−12)
Notice that:

gyt = log(yt)− log(yt−12)
= (log(yt)− log(yt−1)) + (log(yt−1)− log(yt−2)) + ...+ (log(yt−11)− log(yt−12))
= gmt + gmt−1 + gmt−2 + gmt−3 + ...+ +gmt−11

We simply add up the monthly growth rates to obtain the annual growth rate.

Returning now to those monthly growth rate forecasts, we have already seen that these monthly rates fluctuate
a lot and therefore may not be easy to predict.

To evaluate the forecasts we use the familiar criteria of Root Mean Squared Error and Mean Absolute Error
and also the sum of the 24 forecast errors.

Evaluation criteria : RMSE and MAE SUM : sum of forecast errors
24∑
t=1

(yt−ŷt)RMSE = ( 1
nf

nf∑
i=1

(yi−ŷi)2) 1
2MAE = 1

nf

nf∑
i=1
| yi−ŷi |

The numbers in the last column of this table show that adding the leading index does indeed reduce the
out-of- sample forecast errors for the monthly growth rates. So the in-sample success is also confirmed in
out-of-sample forecasting.
forecast <- forecast %>% mutate(error_ar3=(GRIP-ar3_fitted),error_adl36=(GRIP-adl36_fitted))
RMSE_ar3 <- sqrt((1/length(forecast$GRIP))*sum(forecast$error_ar3^2, na.rm = T))
MAE_ar3 <- (1/length(forecast$GRIP))*sum(abs(forecast$error_ar3), na.rm = T)
SUM_ar3 <- sum(forecast$error_ar3, na.rm = T)
RMSE_adl36 <- sqrt((1/length(forecast$GRIP))*sum(forecast$error_adl36^2, na.rm = T))
MAE_adl36 <- (1/length(forecast$GRIP))*sum(abs(forecast$error_adl36), na.rm = T)
SUM_adl36 <- sum(forecast$error_adl36, na.rm = T)

tests1 <- matrix(c(RMSE_ar3,RMSE_adl36,MAE_ar3,MAE_adl36,SUM_ar3,SUM_adl36),nrow = 3, byrow = T)
colnames(tests1) <- c("AR(3)","ADL(3,6)")
rownames(tests1) <- c("RMSE","MAE","SUM")
kable(tests1,booktabs = TRUE, digits = 5) %>%

kable_styling() %>%
footnote(general = "We prefer the closest to 0")

AR(3) ADL(3,6)
RMSE 0.00347 0.00318
MAE 0.00279 0.00225
SUM -0.01563 -0.00674
Note:
We prefer the closest to 0

Selected model ADL(3,6) : GRIPt = 0.001+0.204·GRIPt−3+0.238·GRCLIt−6+et(tb3 = 3.2, tb6 = 3.5, R2 = 0.106)
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Application on diferent time range

prodtrain <- read_csv(
"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/trainexer65.csv")

prodtrain$YEAR<- as.Date(paste0(prodtrain$YEAR, '-01-01'))

We filter with date data
estimation <- prodtrain %>% filter(YEAR <= as.Date("2002-01-01"))
forecast <- prodtrain %>% filter(YEAR > as.Date("2002-01-01"))

• produtrain Data set on Industrial Production and the Composite Leading Index for the USA, yearly
data 1960 to 2007 (Source: Conference Board, USA). Estimation period is 1960 to 2002. Forecast
evaluation period is 2003 to 2007.

• CLI: Composite Leading Index (based on 10 leading indicators)

• IP: Industrial Production (index, seasonally adjusted)

• LOGCLI: logarithm of CLI

• LOGIP: logarithm of IP

• GRCLI: monthly growth rate of CLI,first difference of LOGCLI

• GRIP: monthly growth rate of IP,first difference of LOGIP

Note: In all questions, use 1960-2002 as estimation and test sample, and use 2003-2007 as hold-out forecast
evaluation sample.

a) Graph analysis

Make time series plots of log(IP) and log(CLI), and also of the yearly growth rates GIP and GCLI. What
conclusions do you draw from these plots?
plot_a <- ggplot(data=estimation, aes(x=YEAR)) +

geom_line(aes(y=LOGIP,col="log(IP)")) +
geom_line(aes(y=LOGCLI,col="log(CLI)")) +
labs(x = "", y = "", title = "Logarithm",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_b <- ggplot(data=estimation, aes(x=YEAR)) +
geom_line(aes(y=GIP,col="Gr IP")) +
geom_line(aes(y=GCLI,col="Gr CLI")) +
labs(x = "", y = "", title = "Growth rates",

subtitle = ("")) +
scale_x_date(date_breaks = "5 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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grid.arrange(plot_a, plot_b, nrow = 1)
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It seems that both of the log series have a trend, and perhaps cointegrated. The yearly growth rates seems
rather stationary and have hevy fluctuations in the 70s.

b) Unit root

(i) Perform the Augmented Dickey-Fuller (ADF) test for log(IP). In the ADF test equation, include (among
others) a constant (α), a deterministic trend term (βt), and two lags of GIP = ∆log(IP ). Report the
coefficient of log(IPt−1) and its standard error and t-value, and draw your conclusion.

(ii) Perform a similar ADF test for log(CLI).
# Set k=2 for the Dickey Fuller test with two lags and type 'trend'
adf_logip <- urca::ur.df(estimation$LOGIP, type = "trend", lags = 2)
summary(adf_logip)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -0.088301 -0.020459 0.006329 0.023546 0.060809
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.254164 0.338227 3.708 0.00072 ***
## z.lag.1 -0.354277 0.099364 -3.565 0.00107 **
## tt 0.009322 0.002855 3.265 0.00245 **
## z.diff.lag1 0.381659 0.139618 2.734 0.00976 **
## z.diff.lag2 -0.204374 0.141703 -1.442 0.15811
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03699 on 35 degrees of freedom
## Multiple R-squared: 0.3925, Adjusted R-squared: 0.323
## F-statistic: 5.653 on 4 and 35 DF, p-value: 0.001283
##
##
## Value of test-statistic is: -3.5654 10.0788 7.2332
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61

The value we find for the coefficient of log(GIP) is -0.35 with Std. Error 0.099 and t-value -3.56 < -3.5 so

log(IP) is not stationary.
# Set k=2 for the Dickey Fuller test with two lags and type 'trend'
adf_logcli <- urca::ur.df(estimation$LOGCLI, type = "trend", lags = 2)
summary(adf_logcli)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.129013 -0.026238 0.003642 0.029110 0.075559
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.880733 0.450014 1.957 0.0583 .
## z.lag.1 -0.245361 0.128956 -1.903 0.0653 .
## tt 0.005395 0.002818 1.914 0.0638 .
## z.diff.lag1 0.325877 0.154288 2.112 0.0419 *
## z.diff.lag2 -0.294723 0.158730 -1.857 0.0718 .
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04836 on 35 degrees of freedom
## Multiple R-squared: 0.2924, Adjusted R-squared: 0.2115
## F-statistic: 3.615 on 4 and 35 DF, p-value: 0.01439
##
##
## Value of test-statistic is: -1.9027 4.8721 1.8483
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61

The value we find for the coefficient of log(GIP) is -0.24 with Std. Error 0.128 and t-value -1.90 > -3.5 so

log(CLI) is not stationary.

c) Cointegration

Perform the two-step Engle-Granger test for cointegration of the time series log(IP) and log(CLI). The
secondstep regression is of the type ∆et = α+−0.0068et−1 + βt+ ρet−1 + β1∆et−1 + β2∆et−2 + rest where
et are the residuals of step 1. What is your conclusion?
step1 <- lm(LOGIP ~ LOGCLI, data=estimation)
summ(step1, digits = 3)

Observations 43
Dependent variable LOGIP
Type OLS linear regression

F(1,41) 617.020
R2 0.938
Adj. R2 0.936

Est. S.E. t val. p
(Intercept) -1.021 0.204 -5.004 0.000
LOGCLI 1.271 0.051 24.840 0.000

Standard errors: OLS

# We add the residuals of step 1 into the dataset
estimation <- estimation %>% mutate(step1.res = resid(step1))
# Perform ADF on the residuals.
adf_coint <- urca::ur.df(estimation$step1.res, type = "trend", lags = 2)
summary(adf_coint)

##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
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## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.090576 -0.030342 -0.001155 0.036069 0.105169
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0240265 0.0182555 1.316 0.1967
## z.lag.1 -0.1778610 0.1012059 -1.757 0.0876 .
## tt -0.0008875 0.0007283 -1.219 0.2311
## z.diff.lag1 0.1428094 0.1551645 0.920 0.3637
## z.diff.lag2 -0.3186368 0.1586728 -2.008 0.0524 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05093 on 35 degrees of freedom
## Multiple R-squared: 0.2616, Adjusted R-squared: 0.1772
## F-statistic: 3.099 on 4 and 35 DF, p-value: 0.02767
##
##
## Value of test-statistic is: -1.7574 1.9343 2.8468
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.15 -3.50 -3.18
## phi2 7.02 5.13 4.31
## phi3 9.31 6.73 5.61

The value we find for the coefficient of et−1 is -0.177 with Std. Error 0.101 and t-value -1.75 > -3.8 so > e_t
is not stationary: Series are not cointegrated.

d) Granger causality

Perform two F-tests, one for the Granger causality of GIP for GCLI and the other for the Granger causality
of GCLI for GIP. Include a constant and two lags of both variables in the test equations. Report the degrees
of freedom and the numerical values of the two F-tests, and draw your conclusion.
# Test for causality: For CLI
# IP is Granger causal for CLI # Null: Restrictions true, means not granger causal

lm0 <- lm(GCLI ~ lag(GCLI,1) + lag(GCLI,2), data=estimation) # Restricted mode
lm1 <- lm(GCLI ~ lag(GCLI,1) + lag(GCLI,2) + lag(GIP,1) + lag(GIP,2), data=estimation) # Unrestricted model
# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
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print(paste("The degrees of freedom are n = ",n," (n-k) = ",n-k))

## [1] "The degrees of freedom are n = 41 (n-k) = 36"
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 2.67"
print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 3.259"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}

## [1] "We do not reject H_0 at 0.95%"

For CLI: F-test = 2.67 < 3.26 → H0 not rejected, so the Null Hypothesis is not rejected.

IP is NOT Granger causal for CLI
# Test for causality: For IP
#CLI is Granger causal for IP # Null: Restrictions true, means not granger causal

lm0 <- lm(GIP ~ lag(GIP,1) + lag(GIP,2), data=estimation) # Restricted mode
lm1 <- lm(GIP ~ lag(GIP,1) + lag(GIP,2) + lag(GCLI,1) + lag(GCLI,2), data=estimation) # Unrestricted model
# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
print(paste("The degrees of freedom are n = ",n," (n-k) = ",n-k))

## [1] "The degrees of freedom are n = 41 (n-k) = 36"
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 11.747"
print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 3.259"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}

## [1] "We reject H_0 at 0.95% in favor of H_1"

For IP: F-test = 11.75 > 3.26 → H0 rejected

CLI is Granger causal for IP. Indeed, as past CLI helps to predict current IP yearly growth rate.
So is indeed a leading index.
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e) AR models

Show that the coefficients of both lags in an AR(2) model for GIP are insignificant. Show also that even
the slope coefficient in the AR(1) model is insignificant. Make two forecasts for GIP for the five years from
2003-2007, one from the AR(1) model and another from the simple model GIPt = α+ εt

ar2 <- lm(GIP ~ lag(GIP,1) + lag(GIP,2), data=estimation)
summ(ar2, digits = 3)

Observations 41 (2 missing obs. deleted)
Dependent variable GIP
Type OLS linear regression

F(2,38) 2.431
R2 0.113
Adj. R2 0.067

Est. S.E. t val. p
(Intercept) 0.031 0.009 3.301 0.002
lag(GIP, 1) 0.247 0.147 1.680 0.101
lag(GIP, 2) -0.235 0.146 -1.612 0.115

Standard errors: OLS

ar1 <- lm(GIP ~ lag(GIP,1), data=estimation)
summ(ar1, digits = 3)

Observations 42 (1 missing obs. deleted)
Dependent variable GIP
Type OLS linear regression

F(1,40) 0.566
R2 0.014
Adj. R2 -0.011

Est. S.E. t val. p
(Intercept) 0.030 0.009 3.511 0.001
lag(GIP, 1) 0.112 0.149 0.752 0.456

Standard errors: OLS

ar0 <- lm(GIP ~ 1, data=estimation)
summ(ar0, digits = 3)

Observations 43
Dependent variable GIP
Type OLS linear regression

# We add the fitted values of both models to the forecast dataset
forecast <- forecast %>% mutate(ar1_fitted=predict(ar1,newdata = forecast))
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Est. S.E. t val. p
(Intercept) 0.031 0.007 4.282 0.000

Standard errors: OLS

forecast <- forecast %>% mutate(ar0_fitted=predict(ar0,newdata = forecast))
forecast <- forecast %>% mutate(ar2_fitted=predict(ar2,newdata = forecast))

The coefficients in model AR(2) and AR(1) are not signifficant. The last model with only constant term has
a mean value 0.031 and it is statistically significant at 99% over the period 1960 to 2002.

We compute the forecast for the models:
forecast_plot <- ggplot(data=forecast, aes(x=YEAR)) +

geom_line(aes(y=GIP,col="Actual GIP")) + geom_point(aes(y=GIP,col="Actual GIP")) +
geom_line(aes(y=ar1_fitted,col="Forecast AR(1)")) + geom_point(aes(y=ar1_fitted,col="Forecast AR(1)")) +
geom_line(aes(y=ar0_fitted,col="Forecast AR(0)")) + geom_point(aes(y=ar0_fitted,col="Forecast AR(0)")) +
geom_line(aes(y=ar2_fitted,col="Forecast AR(2)")) + geom_point(aes(y=ar2_fitted,col="Forecast AR(2)")) +
labs(x = "", y = "", title = "Forecast annual GIP for 2003-2007 (n = 5)",

subtitle = ("")) +
theme_bw() +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.15, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

forecast_plot
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f) ADL models

Estimate the ADL(2,2) model GIPt = α+ β1GIPt−1 + β2GIPt−2 + γ1GCLIt−1 + γ2GCLIt−2 + εt, and show
by means of an F-test that the null hypothesis that β1 = β2 = γ2 = 0. Then estimate the ADL(0,1) model
GIPt = α+ γ1GCLIt−1 + εt and use this model to forecast GIP for the five years from 2003-2007.
adl22 <- lm(GIP ~ lag(GIP,1) + lag(GIP,2) + lag(GCLI,1) + lag(GCLI,2), data=estimation)
summ(adl22)

Observations 41 (2 missing obs. deleted)
Dependent variable GIP
Type OLS linear regression

F(4,36) 7.78
R2 0.46
Adj. R2 0.40

Est. S.E. t val. p
(Intercept) 0.02 0.01 1.93 0.06
lag(GIP, 1) -0.22 0.19 -1.16 0.25
lag(GIP, 2) 0.25 0.18 1.37 0.18
lag(GCLI, 1) 0.72 0.15 4.80 0.00
lag(GCLI, 2) -0.17 0.17 -1.02 0.31

Standard errors: OLS

# We add the fitted values of both models to the forecast dataset
forecast <- forecast %>% mutate(adl22_fitted=predict(adl22,newdata = forecast))

We test the null β1 = β2 = γ2 = 0
# F test
lm0 <- lm(GIP ~ lag(GCLI,1), data=estimation[-1,]) # Restricted mode
lm1 <- lm(GIP ~ lag(GIP,1) + lag(GIP,2) + lag(GCLI,1) + lag(GCLI,2), data=estimation[-1,]) # Unrestricted model

### Important: The unrestricted model lm1 has 2 lagas and therefore is estimated 1962-2002
### The restricted model lm0 has 1 lag and therefore can be estimated 1961-2002
### But the F test requires the same sample for both models, thats why we remove the first row

# The rest is calculated automatically.
n <- nobs(lm1)
g <- length(lm1$coefficients)-length(lm0$coefficients)
k <- length(lm1$coefficients)
r2_0 <- summary(lm0)$r.squared
r2_1 <- summary(lm1)$r.squared
F_test <- ((r2_1-r2_0)/g)/((1-r2_1)/(n-k))
F_crit <- qf(0.95,g,(n-k))
print(paste("The degrees of freedom are n = ",n," (n-k) = ",n-k))

## [1] "The degrees of freedom are n = 40 (n-k) = 35"
print(paste("The F test value is ",round(F_test,3)))

## [1] "The F test value is 1.585"
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print(paste("The F critical value at 0.95% is ",round(F_crit,3)))

## [1] "The F critical value at 0.95% is 2.874"
if(F_test<F_crit){

print(paste("We do not reject H_0 at 0.95%"))
} else {

print(paste("We reject H_0 at 0.95% in favor of H_1"))
}

## [1] "We do not reject H_0 at 0.95%"

As the null hypothesis is not rejected, we keep the simple model ADL(0,1) model GIPt = α+γ1GCLIt−1 + εt.

We estimate the ADL(0,1) model GIPt = α+ γ1GCLIt−1 + εt

adl01 <- lm(GIP ~ lag(GCLI,1), data=estimation)
summ(adl01)

Observations 42 (1 missing obs. deleted)
Dependent variable GIP
Type OLS linear regression

F(1,40) 18.64
R2 0.32
Adj. R2 0.30

Est. S.E. t val. p
(Intercept) 0.02 0.01 3.40 0.00
lag(GCLI, 1) 0.47 0.11 4.32 0.00

Standard errors: OLS

# We add the fitted values of both models to the forecast dataset
forecast <- forecast %>% mutate(adl01_fitted=predict(adl01,newdata = forecast))

We use this model to forecast GIP for the five years from 2003-2007.
forecast_plot <- ggplot(data=forecast, aes(x=YEAR)) +

geom_line(aes(y=GIP,col="Actual GIP")) + geom_point(aes(y=GIP,col="Actual GIP")) +
geom_line(aes(y=adl01_fitted,col="Forecast ADL(0,1)")) +
geom_point(aes(y=adl01_fitted,col="Forecast ADL(0,1)")) +
#geom_line(aes(y=adl22_fitted,col="Forecast ADL(2,2)")) +
#geom_point(aes(y=adl22_fitted,col="Forecast ADL(2,2)")) +
labs(x = "", y = "", title = "Forecast annual GIP for 2003-2007 (n = 5)",

subtitle = ("")) +
theme_bw() +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.20, .15),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

forecast_plot
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g) Out of sample forecast

Compare the three series of forecasts of parts (e) and (f) by computing their values of the root mean squared
error (RMSE), mean absolute error (MAE), and the sum of the forecast errors (SUM). Check that it seems
quite difficult to forecast the IP growth rates for 2003 to 2007 from models estimated from 1960 to 2002.
Can you think of possible reasons why this is the case?
forecast <- forecast %>% mutate(error_ar2=(GIP-ar2_fitted),

error_ar1=(GIP-ar1_fitted),
error_ar0=(GIP-ar0_fitted),
error_adl22=(GIP-adl22_fitted),
error_adl01=(GIP-adl01_fitted))

RMSE_ar2 <- sqrt((1/length(forecast$GIP))*sum(forecast$error_ar2^2, na.rm = T))
RMSE_ar1 <- sqrt((1/length(forecast$GIP))*sum(forecast$error_ar1^2, na.rm = T))
RMSE_ar0 <- sqrt((1/length(forecast$GIP))*sum(forecast$error_ar0^2, na.rm = T))
RMSE_adl22 <- sqrt((1/length(forecast$GIP))*sum(forecast$error_adl22^2, na.rm = T))
RMSE_adl01 <- sqrt((1/length(forecast$GIP))*sum(forecast$error_adl01^2, na.rm = T))

MAE_ar2 <- (1/length(forecast$GIP))*sum(abs(forecast$error_ar2), na.rm = T)
MAE_ar1 <- (1/length(forecast$GIP))*sum(abs(forecast$error_ar1), na.rm = T)
MAE_ar0 <- (1/length(forecast$GIP))*sum(abs(forecast$error_ar0), na.rm = T)
MAE_adl22 <- (1/length(forecast$GIP))*sum(abs(forecast$error_adl22), na.rm = T)
MAE_adl01 <- (1/length(forecast$GIP))*sum(abs(forecast$error_adl01), na.rm = T)

SUM_ar3 <- sum(forecast$error_ar3, na.rm = T)
SUM_ar2 <- sum(forecast$error_ar2, na.rm = T)
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SUM_ar1 <- sum(forecast$error_ar1, na.rm = T)
SUM_ar0 <- sum(forecast$error_ar0, na.rm = T)
SUM_adl22 <- sum(forecast$error_adl22, na.rm = T)
SUM_adl01 <- sum(forecast$error_adl01, na.rm = T)

tests1 <- matrix(c(RMSE_ar2,RMSE_ar1,RMSE_ar0,RMSE_adl22,RMSE_adl01,
MAE_ar2,MAE_ar1,MAE_ar0,MAE_adl22,MAE_adl01,
SUM_ar2,SUM_ar1,SUM_ar0,SUM_adl22,SUM_adl01),nrow = 3, byrow = T)

colnames(tests1) <- c("AR(2)","AR(1)","AR(0)","ADL(2,2)","ADL(0,1)")
rownames(tests1) <- c("RMSE","MAE","SUM")
kable(tests1,booktabs = TRUE, digits = 5) %>%

kable_styling() %>%
footnote(general = "We prefer the closest to 0")

AR(2) AR(1) AR(0) ADL(2,2) ADL(0,1)
RMSE 0.00879 0.01057 0.01102 0.00758 0.01522
MAE 0.00618 0.00762 0.00928 0.00516 0.01225
SUM -0.03091 -0.03554 -0.04207 -0.02175 -0.06125
Note:
We prefer the closest to 0

Let’s see how our fitted models perform for the whole sample period:

In 2003-2007 the GIP has relatevely flat as GCLI had still high variance. We can see that it is not possible
to predict the growth rate of IP in 2003-2007, simply the mean over 1960-2002 is best: It seems that the
economic structure has changed over the millenium term. And after 2003 there has been a turmoil worldwide,
specially in the USA. The good performance over the previous years breakdown in 2003-2007 period.
prodtrain <- prodtrain %>% mutate(adl01_fitted=predict(adl01,newdata = prodtrain))
prodtrain <- prodtrain %>% mutate(adl22_fitted=predict(adl22,newdata = prodtrain))
prodtrain <- prodtrain %>% mutate(ar1_fitted=predict(ar1,newdata = prodtrain))
prodtrain <- prodtrain %>% mutate(ar0_fitted=predict(ar0,newdata = prodtrain))
prodtrain <- prodtrain %>% mutate(ar2_fitted=predict(ar2,newdata = prodtrain))

forecast_plot <- ggplot(data=prodtrain, aes(x=YEAR)) +
geom_line(aes(y=GIP,col="Actual GIP")) + geom_point(aes(y=GIP,col="Actual GIP")) +
geom_line(aes(y=adl01_fitted,col="Forecast ADL(0,1)")) +
geom_point(aes(y=adl01_fitted,col="Forecast ADL(0,1)")) +
geom_line(aes(y=adl22_fitted,col="Forecast ADL(2,2)")) +
geom_point(aes(y=adl22_fitted,col="Forecast ADL(2,2)")) +
#geom_line(aes(y=ar1_fitted,col="Forecast AR(1)")) + geom_point(aes(y=ar1_fitted,col="Forecast AR(1)")) +
#geom_line(aes(y=ar0_fitted,col="Forecast AR(0)")) + geom_point(aes(y=ar0_fitted,col="Forecast AR(0)")) +
#geom_line(aes(y=ar2_fitted,col="Forecast AR(2)")) + geom_point(aes(y=ar2_fitted,col="Forecast AR(2)")) +
geom_vline(xintercept = as.numeric(as.Date("2003-01-10"))) +
labs(x = "", y = "", title = "All models Forecast annual GIP for 1960-2007 (n = 5)",

subtitle = ("Estimation / Forecast cut off in 2003")) +
theme_bw() +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.70, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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