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Model Specification

dataset3 <- read_csv(
"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset3.csv")

dataset3 <- dataset3 %>% mutate(year_orig = Year)
dataset3$Year <- as.Date(ISOdate(dataset3$Year, 12, 31))

Datset:

This is a stock market data set for the United States for 1927-2013 (yearly data). The source of the data is
the updated version of the Goyal and Welch (2008)1 data. The data are available from the website of Prof
Amit Goyal

The variables are:

• Year
• Index: The S&P500 index
• Dividends: Dividends on the index (“D12” in the Goyal and Welch [GW] file)
• Riskfree: Riskfree rate (“Rfree” in GW)
• LogEqPrem: Log of the equity premium (calculated following GW) Calculated as: (Index+D12)

Index(−1) −
log(1 + Rfree), where x(−1) denotes value from previous period, log is the natural logarithm, D12
dividends and Rfree the riskfree rate.

• BookMarket: Book to market ratio (“b/m” in GW)
• NTIS: Equity issued (“ntis” in GW)
• DivPrice: Dividend to price ratio (calculated following GW) Calculated as: log(D12)− log(Index),

where D12 are dividends.
• EarnPrice: Earnings to price ratio (calculated following GW) Calculated as: log(E12)/log(Index),

where E12 are earnings.
• Inflation: Inflation rate (“infl” in GW)

Suppose we have a data set of a stock price index with a large number of variables which of which we suspect
they may explain movements in the stock index.

There are a number of questions that we need to address before we can actually formulate a model for a
stock price index as function of the explanatory variables.

• Do we include all explanatory variables or only a few? And if we don’t include all variables, how can
we select which of the variables to include? Counterintuitive as it may seem, we do not always include
all variables.

• Do we take the data as they are, or transform the variables?

• Once we have a model, how can we evaluate whether the model is appropriate in some sense?

These questions are, of course, relevant in any kind of application, not just the stock market setting which is
the focus of this section.

We will illustrate these questions by looking at an example.
dataset3 %>% ggplot(aes(x=Year)) +

geom_line(aes(y=Index, col = "SP500 Index")) +
labs(x = "", y = "", title = "Stock Market Index",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "4 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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SP500 Index

Data set for the United States for 1927−2013

Stock Market Index

This figure shows the annual evolution of the S&P 500 stock price index over the years 1927 up to 2013.
There’s an exponential growth visible in the figure. Some interesting episodes stand out. For example, the
.com bubble at the end of the 1990s and its burst in the early 2000s, and the financial crisis starting 2007,
2008. Of course, there were more crises, but those stand out less clearly in this figure, precisely because of
the exponential growth.

We’re interested in modeling this series, and have a number of explanatory variables. Modeling and forecasting
of stock prices is not easy, and many variables have been examined:

• Stock characteristics: Dividends, earnings, volatility, book value, issuing activity.

• Interest-rate related: Treasury bill rates, long term yields, corporate bond returns.

• Macroeconomic: Inflation, investment, consumption.

This list is not exhaustive, and it is hopefully already obvious that it is quite a challenge to select the
important variables, if any. The first question we turn to is precisely on how to make this decision. Do we
simply select all variables or just a few, and if a few, which ones?

Let’s take one of the explanatory variables, which is the book-to-market ratio. This is the book value of
the firms relative to the market value. The picture on the left plots the index together with this variable,
with the index in blue on the left axis and the book-to-market ratio in red on the right axis.
par(mar = c(5, 5, 3, 5))
plot(dataset3$Year,dataset3$Index, type ="l", xlab = "Year", ylab = "Index", col="blue",main = "Index and Book Market ratio")
par(new = TRUE)
plot(dataset3$Year,dataset3$BookMarket, type ="l", xaxt = "n", yaxt = "n",

ylab = "", xlab = "", col="red", lty = 1)
axis(side = 4)
mtext("BookMarket", side = 4, line = 3)
legend("top", c("Index", "Book/Mkt"),
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col = c("blue", "red"), lty = c(1, 1))
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It is obvious the two variables behave differently. The index grows exponentially, while the book-to-market
ratio stays relatively stable over time. We can transform the series in order to get a more similar behavior.
For example, to undo the exponential growth, we can take the log of the index.

This figure plots the log of the index together with the book-to-market ratio, and just by looking at the
picture, it seems we got the variables a bit more on the same scale. Taking the log of a series is a very
common transformation.
par(mar = c(5, 5, 3, 5))
plot(dataset3$Year,log(dataset3$Index), type ="l", xlab = "Year", ylab = "log(Index)", col="blue",main = "log(Index) and Book Market ratio")
par(new = TRUE)
plot(dataset3$Year,dataset3$BookMarket, type ="l", xaxt = "n", yaxt = "n",

ylab = "", xlab = "", col="red", lty = 1)
axis(side = 4)
mtext("BookMarket", side = 4, line = 3)
legend("top", c("log(Index)", "Book/Mkt"),

col = c("blue", "red"), lty = c(1, 1))
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It turns out that in our current application, we still need another transformation. We do not considered the
log of the series directly, but the change in the log of the index from one period to the next. This figure plots
the change of the log of the index against the book to market ratio, and indeed now the variables move
on the same scale.
dataset3 <- dataset3 %>% mutate(log_sp500=log(Index),dif_log_sp500=c(NA,diff(log(Index))))
dataset3 %>% ggplot(aes(x=Year)) +

geom_line(aes(y=dif_log_sp500, col = "Change in log(Index)")) +
geom_line(aes(y=BookMarket, col = "Book / Market")) +
labs(x = "", y = "", title = "Change in log Stock Market Index and BookMarket ratio",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "4 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .90),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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Change in log Stock Market Index and BookMarket ratio

After the 1980s, the book-to-market flattens out a bit, and goes to a lower level. It is not clear the relationship
between the stock index and book-to-market ratio is stable before the 1980s and or after. Later, we talk
about methods to test whether there’s a break in the relationship and also discuss tests that can inform us
whether the model is actually good enough.

We can regress the change of the log index on a constant and book-to-market to study this relation in more
detail.
lm1 <- lm(dif_log_sp500 ~ BookMarket , data = dataset3)
# We add the residuals and fitted values into the dataset
dataset3 <- dataset3 %>% mutate(lm1.res = c(NA,resid(lm1)))
dataset3 <- dataset3 %>% mutate(lm1.pred = c(NA,predict(lm1)))

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:32

∆log(SP500index) = 0.177− 0.213ÖBookMarket+ e.

It turns out book-to-market is significant in explaining the change in the log of the stock index. It’s significant
at a 1% level, and the r-squared of this regression is 8%.Since book-to-market is defined as book value divided
by market value, a high book-to-market period typically coincides with a period when the market value is
low and has decreased. So when stock market values are low and have decreased, the stock market index has
decreased. This is precisely what the coefficient tells us.

Perhaps, you already expected the significant explanatory power when modeling stock index movements with
a variable that depends on the market value, but it turns out that book-to-market is also important when we
forecast the stock market.

We took a transformation to get at the significant explanatory power for the stock market and this was rather
ad hoc. More detailed considerations for transforming variables and related concepts, such as non-linear
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Tabla 1: Regression Results

Dependent variable:
dif_log_sp500

BookMarket −0.213∗∗∗
(0.079)

Constant 0.177∗∗∗
(0.050)

Observations 86
R2 0.080
Adjusted R2 0.069
Residual Std. Error 0.191 (df = 84)
F Statistic 7.295∗∗∗ (df = 1; 84)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

effects, will be treated later.

What would happen if we regress regress the S&P500 index (without any kind of transformation) on a
constant and the book-to-market ratio.
lm2 <- lm(Index ~ BookMarket , data = dataset3)
# We add the residuals and fitted values into the dataset
dataset3 <- dataset3 %>% mutate(lm2.res = resid(lm2))
dataset3 <- dataset3 %>% mutate(lm2.pred = predict(lm2))

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:32

Tabla 2: Regression Results

Dependent variable:
Index

BookMarket −1,217.758∗∗∗
(150.794)

Constant 1,035.403∗∗∗
(95.016)

Observations 87
R2 0.434
Adjusted R2 0.427
Residual Std. Error 366.477 (df = 85)
F Statistic 65.216∗∗∗ (df = 1; 85)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

SP500index = 1035.35− 1217.68 ·BookMarket+ e.
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The effect of BookMarket is still significant. We make a plot of the residuals e from both models:
plot_a <- ggplot(data=dataset3, aes(x=Year)) +

geom_line(aes(y=lm1.res, col = "Residuals")) +
# geom_line(aes(y=lm1.pred, col = "Fitted")) +
# geom_line(aes(y=dif_log_sp500, col = "Actual")) +

labs(x = "", y = "", title = "",
subtitle = ("OLS: Change in log(SP500) ~ BookMarket")) +

scale_x_date(date_breaks = "6 year", date_labels = "%Y") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_b <- ggplot(data=dataset3, aes(x=Year)) +
geom_line(aes(y=lm2.res, col = "Residuals")) +

# geom_line(aes(y=lm2.pred, col = "Fitted")) +
# geom_line(aes(y=Index, col = "Actual")) +

labs(x = "", y = "", title = "",
subtitle = ("OLS: SP500 ~ BookMarket")) +

scale_x_date(date_breaks = "6 year", date_labels = "%Y") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .90),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

grid.arrange(plot_a, plot_b, nrow = 1)
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The residuals in both regressions are clearly not the same. The most obvios difference is that in the Not
transformed SP500 model, the residuals have a pattern and strong persistence (violating the assumption A7
e ∼ N(0, 1))

How to specify?
We start with the familiar model where the dependent variable y is explained by a set of variables collected
in X. Here, y can be a stock index return and X a number of variables that may explain movements in the
stock index.

y = Xβ + ε

The question we’ll address now is which variables to include in the matrix X. It turns out that there’s a tough
trade off that we face.

If one considers a model with a small number of variables, there is the risk that relevant variables are missed,
and thus actually too few variables are included. This will lead to an estimation bias.

If one, however, considers a model with too many variables, there’s an efficiency loss.

• To few variables → Bias
• To many variables → Efficiency loss (more variance) even if all variables matter.

Estimation bias

We compare two models. Suppose that the data-generating process, DGP in short, contains two group of
explanatory variables, X1 and X2.

DGP : y = X1β1 +X2β2 + ε→ b1, b2

Estimated Model : y = X1β1 + ε̃→ bR

We contrast this with the actual estimated model which only contains X1. In this model we denote the
estimator of β1 by br, where r stands for restricted as we’ve restricted β2 = 0 to zero. Also a tilde is added
to the disturbance term, to indicate that it is different from the one in the DGP ε 6= ε̃. The estimators of β1
and β2 in the DGP are then ordered by b1, b2.

We can express E(bR) as a function of β1 and β2.

E(bR) = E((X ′1X1)−1X1y) = E((X ′1X1)−1X1(X1β1 +X2β2 + ε))

E(bR) = β1 + (X ′1X1)−1X ′1X2β2 = β1 + Pβ2

With P = (X ′1X1)−1X ′1X2.

This gives us the first result. The restricted estimator will be biased unless β2 = 0 is zero, or X1 and X2
are completely orthogonal, such that the product and thus P is zero. We refer to this bias as the omitted
variable bias.

Efficiency loss

Now we turn to the efficiency part. Efficiency concerns the variance of our estimators. We prefer estimators
that have no or small bias with low variance. An estimator with the lowest possible variance is called efficient.

We can use the fact that bR = b1 + Pb2 and Cov(b2, bR) = 0. Notice that we can rewrite b1 = bR − Pb2 and

V ar(b1) = V ar(bR − Pb2) = V ar(bR) + V ar(Pb2)− 2Cov(bR, P bR)

9



V ar(b1) = V ar(bR) + PV ar(b2)P ′

Solving for V ar(bR)

V ar(bR) = var(b1)− Pvar(b2)P ′

The variance of the restricted estimator, bR, is equal to the variance of the unrestricted estimator, b1 minus a
positive semi-definite term, such that the variance of b1 is always larger than that of bR.

While the benefit of adding variables is bias reduction, a cost is thus increased variance.

Bias-variance trade-off

One way to get more insight into the bias-efficiency trade-off (also referred to as the bias-variance trade-off)
is to combine bias and efficiency in the Mean Squared Error (MSE). The mean squared error is defined as:

MSE(b) = E((b− β)(b− β)′)

with b a certain estimator of the unknown parameter β.

MSE(b) = E(bb′ − bβ′ − βb′ + ββ′) = E(bb′)− E(b)β′ − βE(b′) + ββ′

Notice that V ar(b) = E(bb′)− E(b)E(b)′ from the definition of variance. So E(bb′) = V ar(b) + E(b)E(b)′

MSE(b) = V ar(b) + E(b)E(b)′ − E(b)β′ − βE(b′) + ββ′

We can add and subtract E(b)E(b)′ from the MSE expression and rewrite to get:

MSE(b) = V ar(b) + E(b− β)E(b− β)′

Using this result in the context of b1 and bR, since MSE(b1) = V ar(b1) + E(b1 − β1)E(b− β1)′ = V ar(b1)
since E(b1) = β1 because we use the correct model and there’s no bias- For MSE(bR) = V ar(bR) + E(bR −
βR)E(b− βR)′ we cannot simplify any further. It can be shown that:

MSE(b1)−MSE(bR) = P (V ar(b2)− β2β
′
2)P ′

The resctricted estimator bR is better when MSE(b1)−MSE(bR) > 0 there are two cases:

1. β2 = 0, the restricted model is better as P (V ar(b2))P ′ > 0 so when the second group of regresson is
not relevant, the MSE would tell us to ignore them and use bR

2. β2 6= 0, the restricted model is if V ar(b2)− β2β
′
2 is PSD, thus when the variance of estimator of b2 is

large relative to it’s influence.

The next step is to translate this finding into some measures, or Metrics, that we can use to find a good trade
off between bias and efficiency. We turn to two commonly used decision metrics, information criteria and
out-of-sample prediction.
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Information Criteria

Often there’s a preference for small models in the sense that a limited number of variables are included.
When adding variables, at a certain stage the added benefit of yet another variable will be relatively small,
and it is good to stop adding variables to the model. Information criteria capture this idea. They study the
goodness of fit of a model, here captured with the standard error of the regression s, but impose a penalty on
the number of parameters k. Two commonly used information criteria are the Akaike information criterion,
abbreviated with AIC, and the Bayesian information criterion, abbreviated with BIC.

Akaike : AIC = log(s2) + 2k
n

Bayes : BIC = log(s2) + klog(n)
n

For both the AIC and BIC the value is equal to the log of the squared standard error of the regression plus a
term that is a function of k, the number of variables in the model. The two information criteria differ in
the penalty they impose on the number of parameters. When comparing models, a lower value of the
information criteria is preferred as we aim for a low standard error of the regression.

The penalty on the number of parameters k is 2/n for the AIC and this is log(n) over n for BIC. When
log(n) > 2, the BIC imposes a stronger penalty. Thus for eight or more observations, BIC imposes a stronger
penalty than AIC.

Out of sample prediction

The information criteria are based on so-called in-sample results: using all observations in a sample. Often
we’re also interested in the predictive performance of our model. This can be in a time series sense, that we
want to forecast a stock price to earn some money, but also if you have data on household consumption and
want to predict whether they will buy a certain product or not.

In such cases, the full sample can be split in an in-sample part, often referred to as the training sample, and
an out-of-sample part. The observations in the second out of sample part are kept out of the main analysis,
for example when estimating beta, and they’re only used to examine the predictive ability of the model.

Two commonly used out of sample criteria are the root mean squared error, RMSE, and the mean
absolute error, MAE.

RMSE = ( 1
nf

nf∑
i=1

(yi − ŷi)2) 1
2

MAE = 1
nf

nf∑
i=1
| yi − ŷi |

with nf the number of observations “saved” for the out-of-sample evaluation and ŷi the i-th predicted value
of the dependent variable.

Both criteria consider the difference between the actual observation yi and the predicted value, ŷi, but they
differ slightly in how the prediction errors are averaged. In both cases, a lower value means a better
model.

Iterative selection methods

Now let us return to the problem that a researcher faces, how to decide which variables to include in X.
If you consider removing a group of regressors, you can use an F-test for a joint significance of the second
group of coefficients, or simply a t-test if you wish to remove only a single variable. However, be aware that
these tests are only concerned with the significance and do not incorporate the bias efficiency

11



trade off. If you already have a set of candidate models that differ in the number of parameters, information
criteria can be of use. These take into account that small models are preferred if more complex models do
not perform sufficiently better.

Here you can also consider using out-of-sample prediction. If the goal is prediction and there are a number of
candidate models, you may as well pick the one that has the most predictive power, and provides the lowest
root mean squared error or mean absolute error.

Very often we’re, however, not fortunate enough to start with two groups of regressors, X1 and X2, or with a
candidate set of models, and we need to get just one model first. In this case, iterative selection methods can
be of great help. These come in two variants:

• General to specific: you start with the most general model, including as many variables as are at
hand. Then check whether one or more variables can be removed from the model. This can be based on
individual t-tests, or a joint F-test in case of multiple variables. In case you remove one variable at a
time, the variable with the lowest absolute t-value is removed from the model. The model is estimated
again without that variable, and the procedure is repeated. The procedure continues until all remaining
variables are significant.

• Specific to general.: follows the same logic, but starts with a very small model, sometimes even only
consisting of the constant term. Variables get added one at a time, choosing the one that has the largest
absolute t-statistic. This procedure is repeated until no significant variables can be added anymore.

Both procedures have pros and cons. The specific-to-general approach starts small, which is appealing.
However, many variations need to be tried at the initial steps. Also, it can easily happen that important
variables are missing in initial phases so that initial tests are performed in mis-specified models.

Data Transformation
We start again with the model where we explain a dependent variable y, with one or more explanatory
variables collected in a vector x. A relevant question is, what is the most appropriate form of the data? An
important consideration is that the variables should be incorporated in a compatible manner.

y = Xβ + ε

If our y variable is a level, such as the number of unemployed individuals, it makes more sense to relay that
to X variables that also capture levels, such as the level of production. Similarly if our y variable is some
growth rate then it makes most sense to relate that to an X variable that also considers a growth rate. It
makes less sense to explain the growth rate of unemployment with the level of production.

If variables are not similar in nature one should consider transforming data. We discussed two very common
transformations.

Log and first difference

The first transformation is taking a logarithm of a series. A case where this is a sensible transformation
is when there is some exponential growth. In case of exponential growth, such as commonly found in the
level of macroeconomic and financial quantities, the properties of the series are not stable. The logarithmic
transformation then brings back stability in the sense that the explosive behavior is removed.

The second transformation is taking the difference of a variable relative to its previous observed value. This
transformation makes most sense when data capture observations for a variable at different points in time,
and are thus ordered. Sometimes such a data set, often referred to as a time series data set, shows a trend.
When there is such a trending pattern, it may affect the stability properties of the series, which causes
statistical assumption to not hold.

Fortunately, the stability is oftentimes easily restored by taking the difference.
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∆yi = yi − yi−1

Non-linearity

So far, we’ve considered non-linear transformation on the variables. Let us study non-linearity a bit further.

yi = x′iβ + ε = β1 +
k∑
j=2

βjxji + εi

At the top here is the usual setting, where the dependence of y on a constant and k-1 other explanatory
variables is written separately. The marginal effects are constant and simply equal to the beta parameters.
∂yi

∂xji
= βj

We can extend this setting to get nonlinear effects. For example, we can consider the square of all the
explanatory variables. Also, we can consider cross-products of the explanatory variables, which we often refer
to as interaction terms. Taking both together in our usual linear model, we get a set-up such as on the
middle of the slide.

yi = β1 +
k∑
j=2

βjxji +
k∑
j=2

γjjx
2
ji +

k∑
j=2

k∑
h=j+1

γjhxjixhi + εi

There are two reasons to consider this structure. First, it allows for a non-linear functional form, here
quadratic. We can ask to extend this further by adding cubic or even higher order terms, which allows for
very rich non-linear relationships. The nice thing is that for all sorts of variations, the relationship from X to
y is non-linear, but the setup remains linear in the unknown parameters beta.

Taking the square of a series, or cross product of two series, does not depend on parameters, and enters
linearly. Thus, ordinary least squares can still be used. A second reason for such a set-up is that, even
though the structure itself may seem somewhat contrived, it may actually provide a meaningful economic
specification.

As an example of this, let us go back to the second series of lectures, where attention was paid to wage
regressions. One of the specifications considered is repeated here, where the log(Wage) is explained by a
constant, a dummy whether the i-th observation is female or not, the age, education level, and dummy for
part-time work.

log(Wage)i = β1 + β2Femalei + β3Agei + β4Educi + β5Parttimei + εi

We extend this model with quadratic and interaction terms.

log(Wage)i = β1 + β2Femalei + β3Agei + β4Educi + β5Parttimei + γ1FemaleiEduci + γ2Age
2
i + εi

In this specification, there’s an interaction term for the gender dummy and education level measured by
γ1, and a quadratic term for age measured by γ2. This small extension allows for two extra effects. First,
because of the new interaction term, the partial wage differential is allowed to depend on education.

• The gender effect is now ∂log(Wage)
∂Femalei

= β2 + γ1 · Educi
This allows for the possibility that the wage differential as compared to men is different for higher-educated
woman or lower-educated woman. In fact, in this setting such a hypothesis can simply be tested by studying
the significance of gamma1.

• The effect of an increase of age is ∂log(Wage)
∂Agei

= β3 + 2γ2 ·Agei
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The squared term of age allows for a non-linear effect of age. This allows for the possibility that the wage
increases more during relatively young age when climbing the career ladder and less for older age.

Naturally we could have added other squared and other interaction terms as well in this specification. In fact,
it is possible to start again with a very general set up with all squares and interaction terms and use model
selection of section Model Specification to get to a more specific model.

We can also use dummy variables to get a somewhat richer model structure and add non-linearities. The
mean level of data that are measured quarterly may differ across each of the four quarters. This can be
captured by replacing the constant term by the quarter specific mean level alphai. We can easily formulate
this in our usually framework by use of dummy variables. These dummy variables take the value 1, if a
certain condition holds and 0 if that is not the case.

yi = αi +
k∑
j=2

βjxji + εi

Where αi is the quarter-specific mean level. In this application we define dummy Dhi for each quarter, where
h is 1 through 4 are the quarters. Dhi for h = 1, 2, 3, 4 with Dhi = 1 if observation i is in quarter h and
Dhi = 0 otherwise.

yi = α1DH1i + α2DH2i + α3DH3i + α4DH4i +
k∑
j=2

βjxji + εi

With this notation, we obtain an equation much like before. We simply add the dummies to our X matrix,
and use linear regression to get estimates of the quarter-specific constants alpha, as well of the parameters
beta of the explanatory variables.

Can we add a constant term to this specification with dummies for each quarter? No, if we would add a
constant and four quarterly dummies to our X matrix there would be linear dependence among the columns
of X. Adding to four dummy variables gives exactly the intercept. So (X ′X) cannot be inverted. We can
solve this, however, by simply taking out one of the dummies.

If we omit the first quarterly dummy DH1i so that α1 = 0, this what the model becomes:

yi = α1 + γ2DH2i + γ3DH3i + γ4DH4i +
k∑
j=2

βjxji + εi

The model is equivalent to the model at the top of the slide, but the dummy coefficients have a different
interpretation. As before, α1 measures the mean level for the first quarter. In this specification the mean
level of the second quarter is however given by γ2 + α1. In the specification of the previous slide the mean
level of the second quarter was given by alpha2.

We can thus easily relate the gammas and alphas to each other through the relationship that γ2 = α2 − α1.
Similar results hold for the third and the fourth quarter. γh = αh − α1 for h = 1, 2, 3, 4

Examples with SP500 dataset:

We have previously specified the model:

∆log(SP500index) = β1 + β2BookMarket+ ε

Where we apllied two transformations to the SP500 variable, the log() and the first difference. These two
transformations combined provide the interpretation of being an (approximate) growth rate.

Notice that traditionally a growth rate is calculated yi−yi−1
yi−1

= ∆yi

yi−1
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Remember the following rules for logarithms:

• log(a)− log(b) = log(ab )
• log(ab ) = log(ab + 1− 1) = log(ab + 1− b

b ) = log(1 + a−b
b )

• log(1 + x) ≈ x for small x→ 0

So the first difference can be seen as:

∆log(yi) = log(yi)− log(yi−1) = log( yi
yi−1

) = log(1 + yi − yi−1

yi−1
)

∆log(yi) = log(1 + ∆yi
yi−1

) ≈ ∆yi
yi−1

We now regress the change in the log of the S&P500 index on a constant, the book-to-market ratio, and the
square of the book-to-market ratio.

∆log(SP500index) = β1 + β2BookMarket+ β3BookMarket2 + ε

To add the second order term we need to use the I() function in the model specification around our newly
created predictor.
lm3 <- lm(dif_log_sp500 ~ BookMarket + I(BookMarket^2), data = dataset3)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:33

Tabla 3: Regression Results

Dependent variable:
dif_log_sp500

BookMarket 0.238
(0.287)

I(BookMarket̂ 2) −0.347
(0.213)

Constant 0.056
(0.089)

Observations 86
R2 0.109
Adjusted R2 0.087
Residual Std. Error 0.189 (df = 83)
F Statistic 5.053∗∗∗ (df = 2; 83)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We can see from the p-value of I(BookMarket2) that the coefficient is insignificant, thus the relationship is
not quadratic.

Now we define a dummy that is 1 for 1980 and all following years using ifelse() base function within diplyr.
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dataset3 <- dataset3 %>% mutate(D1980 = ifelse(year_orig >= 1980, 1, 0))

We now regress the change in the log of the S&P500 index on a constant, the book-to-market ratio, and an
interaction between the book-to-market ratio and the just-defined dummy.

∆log(SP500index) = β1 + β2BookMarket+ β3BookMarket ·D1980 + ε

lm4 <- lm(dif_log_sp500 ~ BookMarket + I(BookMarket*D1980), data = dataset3)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:33

Tabla 4: Regression Results

Dependent variable:
dif_log_sp500

BookMarket −0.208∗∗
(0.080)

I(BookMarket ∗D1980) 0.049
(0.086)

Constant 0.166∗∗∗
(0.054)

Observations 86
R2 0.083
Adjusted R2 0.061
Residual Std. Error 0.192 (df = 83)
F Statistic 3.776∗∗ (df = 2; 83)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Is the relationship between the index and book-to-market stable over the pre and post 1980 period?

We can se from the result β3 = 0.048 and is not statistically significant, therefore the relationship might be
stable over the pre-post 1980 periods.

Evaluation of models
In this section, you will learn how to evaluate whether a model is actually a good model. Suppose you use
the techniques from lectures How to specify? and Data Transformation, and obtained estimates for the
parameters of some model. How to know whether the model is satisfactory? We will turn to a number of
tests you can use to evaluate the model. In the last section, we started with a linear model and extended this
to a non-linear model by adding square and interaction terms.

yi = β1 +
k∑
j=2

βjxji +
k∑
j=2

γjjx
2
ji +

k∑
j=2

k∑
h=j+1

γjhxjixhi + εi

Suppose you want to test whether the linear model is good enough or that these extra terms should be added.
A simple idea is to study the joint significance of the gamma coefficients on the squared and interaction
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terms. The key challenge here is that this model contains many parameters. Here we have been even fairly
modest by only considering squares, but of course more powers can be added which multiplies the number of
parameters.

RESET

Fortunately, there is an easy way to reduce the number of parameters. We simply include powers of fitted y
values based on the linear model, instead of the square and interaction terms.

Add fitted values ŷ = Xb = X(X ′X)−1X ′y to the model:

yi = x′iβ +
p∑
j=1

γj ˆ(yi)
j+1

+ εi

Correct linear specification : H0 : γj = 0∀j F-test(p,n-k-p)

The test for non-linearity is then on the joint significance of the gammas in this model. The test
here is written general, with p powers and thus p gamma coefficients. Under the null of a correct linear
specification, the gammas are 0, and the test is an F-test. The number of restrictions are p, and the total
number of parameters in the unrestricted model k+p, such that the degrees of freedom are p and n-k-p. The
F distribution is however approximate, as the y hat is not a usual fixed regressor.

The test is called RESET which stands for Regression Specification Error Test. Strictly speaking
the null is that of correct specification, which is more general than simply the null of linearity. For this reason
the test is a general mis-specification test which the name RESET also alludes too.

• Notice for p = 1, we only have the k usual parameters plus one p extra. So in total, (k + 1) parameters
are to be estimated.

• In contrast, in the previous model with squares and cross-terms we would get the usual k β parameters,
the k-1 squared terms, (note the square of an intercept is simply the intercept) and a number of
interactions.So in total k + (k − 1) + 1

2 (k − 2)(k − 1) parameters are to be estimated.

Chow Break Test

Now we turn to two tests that are both based on the idea that there is some possible break in the sample,
with which the full sample can be split in two groups, one before and one after the break.

We write a model for the first and a model for the second group. We write n1 for the number of observations
in the first group, and n2 for the number of observations in the second group.

y1 = X1β1 + ε1 : n1 observations

y2 = X2β2 + ε2 : n2 = n− n1 observations

In both groups, we have similar models, and the only difference is that the parameter beta changes from
beta1 to beta2. These two models can be written in one framework using vector and matrix notation. We
stack the y1 and y2 vectors, make a block structure of X1 and X2 to get a new larger X matrix, and also
stack the β and disturbance vectors.

(
y1
y2

)
=
(
X1 0
0 X2

)(
β1
β2

)
+
(
ε1
ε2

)
No Break : H0 : β1 = β2 such that

(
y1
y2

)
=
(
X1 0
0 X2

)
β +

(
ε1
ε2

)
The idea of the Chow break test is that we test a restricted set-up, where β1 = β2, against this unrestricted
setup. Under the null of no break, this is an F-test as follows:
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F = (e′ReR − e′UeU )/k
e′UeU/(n− 2k) ∼ F(k,n−2k)

As usual, e denote residuals, and the subscript R stands for the residuals from the restricted model, and U for
the residuals of the unrestricted model. The degrees of freedom are k, the number of imposed restrictions in
the restricted model, and n− 2k, which is the number of observations minus the total number of parameters
in the unrestricted model.

In this particular case it turns out that the unrestricted residuals can be split into two groups, the residuals
from the first group and the residuals from the second group. In fact, the residuals from the first group are
based on only data for the first group and similarly for the second group.

So we have eU =
(
e1
e2

)
thus e′UeU = e′1e1 + e′2e2 = S1 + S2. See the proof at the end of the section in Proofs

for Chow tests

We can then express the F test as follows, where we’ve written S0 for the sum of squared residuals in the
restricted model S0 = e′ReR:

F = (S0 − S1 − S2)/k
S1 + S2/(n− 2k) ∼ F(k,n−2k)

The Chow break test assumes that only the parameter vector beta changes across the two samples, but the
rest of the model structure remains the same.

Chow forecast test

The second break test is a variant of the Chow break test and relaxes this assumption. The test equation is
as follows:

yi = x′iβ +
n1+n2∑
j=n1+1

γjDji + εi

Constant structure : H0 : γj = 0∀j

The sum runs over n2 elements. The dummy Dji = 1 if i = j and 0 else. There is thus exactly one dummy
for each of the n2 observations in group 2. In total there are the usual k parameters in the vector beta plus
n2 gamma parameters that we have to estimate.

Because of these dummies, the fit in the second sample will be perfect. The residuals for all observations i in
the second group are equal to 0 as any deviation of x′iβ from yi is already captured with γi. Thus e2 = 0

Compared to the Chow break test, the S2 term drops out as the second sum of squared residuals is equal
to 0 e2 = 0. The number of restrictions imposed in the restricted model is n2, as all the gammas are set
equal to 0 γj = 0∀j. The degrees of freedom in the denominator is equal to the total number of observations
n = n1 + n2 minus the total number of parameters in the unrestricted model, which is n2 + k Thus the
denominator degrees of freedom is n1 − k.

The F-test for the joint significance of all the gammas then simplifies to the following expression. H0 : γ = 0

F = (S0 − S1)/n2

S1/(n1 − k) ∼ F(n2,n1−k)

If the test statistic is large, the second group of observations does not fit the pattern from the first group
of observations well and we reject the null of constant module structure.

The interpretation is that the test examines whether the relationship in the first sample can be used to
forecast the relationship in the second sample, hence the name of the Chow forecast test.
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We always do our very best to specify a good model, but of course this is not always easy. We should always
perform checks on the chosen model specification, for example, by studying the residuals.

Jarque-Bera

We often assume, for example, in the t and the F-tests that the disturbances are normally distributed. We
can test the validity of this assumption by studying the distribution of the residuals. Ideally, this distribution
should resemble the nice bell shaped curve of the normal distribution, which is symmetric and does not have
thick tails.

The test for normality is based on the third and fourth moments, which are skewness S and kurtosis K that
were discussed in the building blocks. If the skewness and kurtosis of the residuals differ too much from those
of the normal distribution, which are zero and three respectively, we reject the null that the disturbances are
normally distributed.

The Jarque-Bera test is based on this idea:

JB =
(√

n

6S
)2

+
(√

n

24(K − 3)
)2

If null holds : H0 : εi ∼ NID(0, σ2)⇒ JB ∼ χ2(2)

If normality is rejected, further inspection of the model is typically required.

Proofs for Chow tests

1. Chow Break Test. Prove that the vector of residuals from the unrestricted model eU =
(
e1
e2

)
thus

e′UeU = e′1e1 + e′2e2 = S1 +S2. . Show that this is equivalent to calculating the sum of squared residuals
for a regression for only the first sample, thus a regression of y1 ∼ X1 plus the sum of squared residuals
for a regression for only the second sample, thus a regression of y2 ∼ X2

eU =
(
y1
y2

)
−
(
X1 0
0 X2

)(
b1
b2

)
=
(
y1 −X1b1
y2 −X2b2

)
eU =

(
y1
y2

)
−
(
X1 0
0 X2

)(
b1
b2

)
=
(
y1 −X1b1
y2 −X2b2

)
The vector of coefficients can be rewritten as:

(
b1
b2

)
=
((

X1 0
0 X2

)′(
X1 0
0 X2

))−1(
X1 0
0 X2

)′(
y1
y2

)

We can use the fact that
(
X ′1X1 0

0 X ′2X2

)−1
=
(

(X ′1X1)−1 0
0 (X ′2X2)−1

)
recall that X ′iXi is symmetric and

the properties of the inverse of diagonal matrices.

(
b1
b2

)
=
(
X ′1X1 0

0 X ′2X2

)−1(
X ′1y1
X ′2y2

)
=
(

(X ′1X1)−1X ′1y1
(X ′2X2)−1X ′2y2

)
We can see that bi = (X ′iXi)−1X ′iyi the coefficients are identical to the ones obtained in the regression
respectively on group 1 and group 2 observations.

Is because of this that we can express eU =
(
e1
e2

)
and e′UeU = e′1e1 + e′2e2 = S1 + S2 equal the sum squared

residuals of both models.
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2. Chow Forecast Test. First we write the Chow forecast model yi = x′iβ +
∑n1+n2
j=n1+1 γjDji + εi in

matrix form:

For the first n1 observations we have:

• y1 = X1β1 + ε1 (Model 1)

and for the last n2 observations we have

• y2 = X2β2 +Dγ + ε2 (Model 2) with D = In2 , (n2xn2) identity matrix.

We combine these two to derive:

(
y1
y2

)
=
(

X1β1 + ε1
X2β2 +Dγ + ε2

)
=
(
X1 0
X2 D

)(
β
γ

)
+
(
ε1
ε2

)
The test for the null H0 : γ = 0 has the following F test:

F = (e′ReR − e′UeU )/n2

e′UeU/(n1 + n2 − (k − n2)) = (e′ReR − e′UeU )/n2

e′UeU/(n1 − k) ∼ F(k,n−2k)

We denote the sum of square residuals when restricted model (Model 1) is applied to all observations as
S0 = e′ReR. Under the unrestricted alternative (Model 2) the sum of square residuals is obtained by the
following minimization problem:

Minβ,γ

(
y1 −X1β1

y2 −X2β2 −Dγ

)′(
y1 −X1β1

y2 −X2β2 −Dγ

)
That yields: β̂ = (X ′1X1)−1Xy , γ̂ = y2 − α2β̂.

This results that the residuals for the first n1 observations e1 = y1 − X1β̂ and for last n2 observations
e2 = y2 −X2β̂ −Dγ̂ = 0. Therefore e′UeU = e′1e1 = S1 and we have the following F-test: F = (S0−S1)/n2

S1/(n1−k) ∼
F(n2,n1−k)

Application on SP500
Datset:

This is a stock market data set for the United States for 1927-2013 (yearly data). The source of the data is
the updated version of the Goyal and Welch (2008)1 data. The data are available from the website of Prof
Amit Goyal

The variables are:

• Year
• Index: The S&P500 index
• Dividends: Dividends on the index (“D12” in the Goyal and Welch [GW] file)
• Riskfree: Riskfree rate (“Rfree” in GW)
• LogEqPrem: Log of the equity premium (calculated following GW) Calculated as: (Index+D12)

Index(−1) −
log(1 + Rfree), where x(−1) denotes value from previous period, log is the natural logarithm, D12
dividends and Rfree the riskfree rate.

• BookMarket: Book to market ratio (“b/m” in GW)
• NTIS: Equity issued (“ntis” in GW)
• DivPrice: Dividend to price ratio (calculated following GW) Calculated as: log(D12)− log(Index),

where D12 are dividends.
• EarnPrice: Earnings to price ratio (calculated following GW) Calculated as: log(E12)/log(Index),

where E12 are earnings.
• Inflation: Inflation rate (“infl” in GW)
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The application that we consider is how to model the stock market index. A first question we turn to is
whether the index series should be transformed. Then, we consider a number of explanatory variables and
decide which ones we actually include in our model. Finally, we compare a set of candidate models and study
whether the relationship is stable over time.

Variable transformation

Let’s start with the transformation. Here is the S&P 500 index again, annual data of the period 1927 through
2013.
dataset3 %>% ggplot(aes(x=Year)) +

geom_line(aes(y=Index, col = "SP500 Index")) +
labs(x = "", y = "", title = "Stock Market Index",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "4 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.1, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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SP500 Index

Data set for the United States for 1927−2013

Stock Market Index

Now, we of course also have to think carefully about the economic setting. Rather than modeling the stock
index directly, or some appropriate transformed version, we consider how much the stock market index
earns in total, on top of simply putting money in a risk-free asset. This difference tells us how high the
total reward is for taking on the risk of the stock market.

First, to consider all gains from holding stock, we add dividends to the stock market index, as these also
form an important part of the income of holding stocks. The green line gives the index including dividends,
and here, we see some instability.
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Index + Dividends = Indexi +D12i

dataset3 %>% ggplot(aes(x=Year)) +
geom_line(aes(y=Index, col = "SP500 Index")) +
geom_line(aes(y=Index+Dividends, col = "Return = SP500 Index + Dividends")) +
labs(x = "", y = "", title = "Stock Market Index and Return",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "4 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.3, .8),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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Return = SP500 Index + Dividends

SP500 Index

Data set for the United States for 1927−2013

Stock Market Index and Return

We take the log to undo the exponential growth, and consider the difference of the log index to take out
the trend in the log index. It turns out that the combination of these transformations gives a series that is
approximately equal to a growth rate. The green line plus the series, with the values on the right axis.

log Return = log((Indexi +D12i)/Indexi−1)

dataset3 <- dataset3 %>% mutate(log_Ret=log((Index+Dividends)/lag(Index)))
plot_a <- ggplot(data=dataset3, aes(x=Year)) +

geom_line(aes(y=log_Ret, col = "log Return")) +
labs(x = "", y = "", title = "Log Return",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "6 year", date_labels = "%Y") +

theme_bw() +
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theme(axis.text.x = element_text(angle = 90, hjust = 1),
legend.position = c(.5, .20),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")
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Log Return

In terms of econometrics, this is already a series we can work with. For the economic setting, we also subtract
the risk-free rate, for which we take the treasury bill rate, the return on short-term government bonds.

log Equity Premium = log((Indexi +D12i)/Indexi−1)− log(1 +Rfree)

dataset3 <- dataset3 %>% mutate(log_Equity_Prem = log_Ret - log(1+Riskfree))
plot_b <- ggplot(data=dataset3, aes(x=Year)) +

geom_line(aes(y=log_Ret, col = "log Return")) +
geom_line(aes(y=log_Equity_Prem, col = "log Equity Premium")) +
labs(x = "", y = "", title = "Log Return and log Equity Premium",

subtitle = ("Data set for the United States for 1927-2013")) +
scale_x_date(date_breaks = "6 year", date_labels = "%Y") +

theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

legend.position = c(.5, .15),
legend.background = element_rect(fill = "transparent")) +

scale_color_brewer(name= NULL, palette = "Dark2")

plot_b
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Log Return and log Equity Premium

The green line is the log Equity Premium, which is the series we actually model in our analyses, and
represents the extra reward for investing in stock, relative to putting money in safe assets.

Testing Specification

In the analysis, we consider only five of the many explanatory variables available. These five are:

1. Book-to-market ratio
2. A net equity expansion variable issued stock that measures how much stock is issued
3. Dividends relative to prices
4. Earnings relative to prices
5. Inflation.

If you have no feeling for the field of finance and do not understand the precise motivation for these variables,
that is fine. Just treat them as X’s we use to model a certain y, and focus on the approach.

Just to get going, and as we only have five explanatory variables, we run five separate simple regressions. In
each of these regressions, we regress the log equity premium on one of the variables. Each of the columns in
the table, labeled from 1 to 5, provides the output for one of these simple regressions.
lm1 <- lm(LogEqPrem ~ BookMarket, data = dataset3)
lm2 <- lm(LogEqPrem ~ NTIS, data = dataset3)
lm3 <- lm(LogEqPrem ~ DivPrice, data = dataset3)
lm4 <- lm(LogEqPrem ~ EarnPrice, data = dataset3)
lm5 <- lm(LogEqPrem ~ Inflation, data = dataset3)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:37
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Tabla 5: Regression Results

Dependent variable:
LogEqPrem

(1) (2) (3) (4) (5)
Book to Market −0.185∗∗

(0.077)

Issued Stock −0.148
(0.771)

Dividend/Price −0.097∗∗
(0.044)

Earnings/Price −0.032
(0.051)

Inlfation −0.167
(0.511)

Constant 0.166∗∗∗ 0.062∗∗ −0.266∗ −0.027 0.065∗∗
(0.049) (0.025) (0.148) (0.140) (0.026)

Observations 87 87 87 87 87
R2 0.063 0.0004 0.055 0.005 0.001
Adjusted R2 0.052 −0.011 0.044 −0.007 −0.011
Residual Std. Error (df = 85) 0.188 0.194 0.188 0.193 0.194
F Statistic (df = 1; 85) 5.763∗∗ 0.037 4.938∗∗ 0.395 0.106

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

25



From this table, you can see that both the book-to-market and the dividend/price ratio are significant at the
5% level for the log equity premium. Also the R-squareds are highest for these two regressions.

General-to-specific

To develop a model for the log equity premium, we apply the general-to-specific approach. In column one,
the output is given for the regression of the log equity premium on all variables. For all variables, we inspect
whether they are significant, and if there are insignificant variables, we eliminate the variable with the highest
p-value. In this case, the stock issued has the highest p-value, so we drop it and run a second regression
using all variables except for this variable.

We follow the same logic, and again drop the non-significant variable with the highest p-value. In this case,
this is inflation. Note, the constant is also insignificant, with an even higher p-value, but we do prefer to keep
this in the model. A reason for this is that the variables are not demeaned, and we need to ensure that the
disturbance term has mean zero.

In the third regression the dividend/price ratio is the non-significant variable with the highest p-value.
This is quite interesting, because it did give us significance in the simple regression setting. Apparently,
the dividend/price ratio has limited explanatory power for the log equity premium, when controlling for
book-to-market and earnings/price effects.

The fourth regression considers only a constant, book-to-market and the earnings/price ratio. It turns out
this latter variable is insignificant and also has to be dropped in the general-to-specific approach.

Our final model is a simple regression model with only book-to-market.
lm1 <- lm(LogEqPrem ~ BookMarket + NTIS + DivPrice + EarnPrice + Inflation, data = dataset3)
lm2 <- lm(LogEqPrem ~ BookMarket + DivPrice + EarnPrice + Inflation, data = dataset3)
lm3 <- lm(LogEqPrem ~ BookMarket + DivPrice + EarnPrice, data = dataset3)
lm4 <- lm(LogEqPrem ~ BookMarket + EarnPrice, data = dataset3)
lm5 <- lm(LogEqPrem ~ BookMarket, data = dataset3)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:37

Stability

Now we evaluate this model in various ways. First, we check the stability of this relationship.

As an example, we consider the stability during two important periods, the Second World War during 1939
up to 1945, and the oil crisis during 1973 up to 1975.

log(EqPr)i = β1 + β2BTMi + β3BTMi ·DummyWari + β4BTMi ·DummyOili + εi

dataset3 <- dataset3%>% mutate(war_dummy = ifelse(year_orig >= 1939 & year_orig <= 1945, 1, 0),oil_dummy = ifelse(year_orig >= 1973 & year_orig <= 1975, 1, 0))

The table shows the results, including two extra coefficients for the interaction of the book-to-market value
with the war-dummy, and the interaction with the oil-dummy.
lm6 <- lm(LogEqPrem ~ BookMarket + I(BookMarket*war_dummy) + I(BookMarket*oil_dummy), data = dataset3)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Jul 17, 2020 - 20:18:37

The p-value of both the war and oil-dummy interaction term are not significant, so the relationship does not
differ significantly during these periods.
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Tabla 6: Regression Results

Dependent variable:
LogEqPrem

(1) (2) (3) (4) (5)
Book to Market −0.177 −0.166 −0.191 −0.290∗∗∗ −0.185∗∗

(0.154) (0.143) (0.141) (0.107) (0.077)

Issued Stock −0.150
(0.818)

Dividend/Price −0.120 −0.126 −0.090
(0.098) (0.092) (0.084)

Earnings/Price 0.167∗ 0.167∗ 0.128∗ 0.097
(0.085) (0.084) (0.074) (0.068)

Inlfation −0.569 −0.567
(0.587) (0.583)

Constant 0.235 0.205 0.214 0.490∗∗ 0.166∗∗∗
(0.385) (0.346) (0.346) (0.233) (0.049)

Observations 87 87 87 87 87
R2 0.109 0.108 0.098 0.086 0.063
Adjusted R2 0.054 0.065 0.065 0.064 0.052
Residual Std. Error 0.188 (df = 81) 0.186 (df = 82) 0.186 (df = 83) 0.187 (df = 84) 0.188 (df = 85)
F Statistic 1.977∗ (df = 5; 81) 2.492∗∗ (df = 4; 82) 3.009∗∗ (df = 3; 83) 3.927∗∗ (df = 2; 84) 5.763∗∗ (df = 1; 85)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Tabla 7: Regression Results

Dependent variable:
LogEqPrem

BookMarket −0.175∗∗
(0.082)

I(BookMarket ∗war_dummy) 0.078
(0.101)

I(BookMarket ∗oil_dummy) −0.133
(0.124)

Constant 0.160∗∗∗
(0.050)

Observations 87
R2 0.085
Adjusted R2 0.052
Residual Std. Error 0.188 (df = 83)
F Statistic 2.580∗ (df = 3; 83)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Testing Information criteria

We can compare the model we obtained (lm5) to the full model (lm1), including all considered variables.
While the R squared is higher for the full model, our analyses show that most of the other explanatory
variables did not carry significant explanatory power.

Recall our two information criteria:AIC = log(s2) + 2k
n and BIC = log(s2) + klog(n)

n where s2 is the standard
error of the regression s and k the number of parameters.
Rsqr_lm1 <- summary(lm1)$r.squared
Rsqr_lm5 <- summary(lm5)$r.squared
#AIC_lm1 <- AIC(lm1)
#BIC_lm1 <- BIC(lm1)
#AIC_lm5 <- AIC(lm5)
#BIC_lm5 <- BIC(lm5)
AIC_lm1 <- log(sqrt(deviance(lm1)/df.residual(lm1))^2) + (2*6)/nobs(lm1)
BIC_lm1 <- log(sqrt(deviance(lm1)/df.residual(lm1))^2) + (6*log(nobs(lm1)))/nobs(lm1)
AIC_lm5 <- log(sqrt(deviance(lm5)/df.residual(lm5))^2) + (2*2)/nobs(lm5)
BIC_lm5 <- log(sqrt(deviance(lm5)/df.residual(lm5))^2) + (2*log(nobs(lm5)))/nobs(lm5)

info <- matrix(c(Rsqr_lm1,Rsqr_lm5,AIC_lm1,AIC_lm5,BIC_lm1,BIC_lm5),nrow = 3, byrow = T)
colnames(info) <- c("Full Model","Book Market")
rownames(info) <- c("Rsqr","AIC","BIC")
kable(info,booktabs = TRUE, digits = 3) %>%

kable_styling()
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Full Model Book Market
Rsqr 0.109 0.063
AIC -3.210 -3.301
BIC -3.040 -3.244

The Akaike and Bayesian information criteria confirm this. The lowest AIC and BIC values are indeed
obtained for the book-to-market model, confirming this is the preferred approach.

RESET

We use the function resettest
# resettest(formula, power = 2:3, type = c("fitted", "regressor","princomp"), data = list())
reset_lm5 <- resettest(lm5,power = 2, type = "fitted")
reset_lm5

##
## RESET test
##
## data: lm5
## RESET = 3.4563, df1 = 1, df2 = 84, p-value = 0.06651

The null hyp is not rejected H0 : the model is a linear regression model.

Otherwise we could follow the following process:

1. Regress the log equity premium on a constant and the book-to-market ratio. e′0e0 = 2.992
2. Store the fitted log equity premium based on the output from this regression.
3. Regress the log equity premium on a constant, the book-to-market ratio, and the square of the fitted

log equity premium that was stored in the previous step. e′1e1 = 2.992
4. The RESET test statistic is the statistic of an F-test on the fitted log equity premium parameter.
F = (e′0e0−e′1e1)/g

(e′1e1)/(n−k) = 3.4563

Chow Break

We can follow the following process:

1. Regress the log equity premium on a constant and the book-to-market ratio and store the sum of
squared residuals. S0 = 2.992

2. Then perform the same regression for both the subsample of observations over 1927-1979 S1 = 1.981,
and the subsample of observations over 1980-2013, S12 = 0.855

3. For both regressions, store the sum of squared residuals.
4. Use these sum of squared residuals to calculate the Chow break statistic. F = (S0−S1)/n2

S1/(n1−k)
# For Chow test we split our dataset:
dataset <- read_csv(

"https://raw.githubusercontent.com/diego-eco/diego-eco.github.io/master/downloads/dataset3.csv")
dataset_1 <- dataset %>% filter(Year < 1980) # We have 53 obs
dataset_2 <- dataset %>% filter(Year >= 1980) # We have 34 obs
y1 <- unlist(dataset_1 %>% dplyr::select(LogEqPrem),use.names = FALSE)
y2 <- unlist(dataset_2 %>% dplyr::select(LogEqPrem),use.names = FALSE)
x1 <- unlist(dataset_1 %>% dplyr::select(BookMarket),use.names = FALSE)
x2 <- unlist(dataset_2 %>% dplyr::select(BookMarket),use.names = FALSE)

Now we use the function chow.test
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chowbreak <- chow.test(y1,x1,y2,x2)
chowbreak

## F value d.f.1 d.f.2 P value
## 2.2708835 2.0000000 83.0000000 0.1095987

Again, the Null Hyp is not rejected, the model parameters do not suffer from structural break.

Chow Forecast

For the Chow’s forecast test there is no available library in R. So we calculate the F-test as follows:

1. Estimate the OLS vector from the first n1 observations, obtaining β̂1 = (X ′1X1)−1X ′1y1, the vector of
residuals ê1 = y1 −X1β1 and S1 = ê′1ê1

x1 <- matrix(c(rep(1,length(x1)),x1),nrow = length(x1), byrow = F)
x2 <- matrix(c(rep(1,length(x2)),x2),nrow = length(x2), byrow = F)
y1 <- matrix(y1,nrow = length(y1), byrow = F)
y2 <- matrix(y2,nrow = length(y2), byrow = F)
beta_1 <- (solve(t(x1)%*%x1))%*%(t(x1)%*%y1)
e_1 <- y1-x1%*%beta_1
sse_1 <- t(e_1)%*%e_1

2. Fit the same e regression to all N = n1 + n2 observations and obtain the restricted S0 = ê′ê.
y <- rbind(y1,y2)
x <- rbind(x1,x2)
beta_0 <- (solve(t(x)%*%x))%*%(t(x)%*%y)
e <- y-x%*%beta_0
sse_0 <- t(e)%*%e

3. Employt the F-test : F = (S0−S1)/n2
S1/(n1−k) ∼ F(n2,n1−k) with n1 = 53 and n2 = 34.

chowfore <- ((sse_0-sse_1)/34)/(sse_1/(53-2))
# We check if the statistic falls within the interval at 99%
#(T We accept H0: Constant module structure) (F We reject H0)
c_R=qf(0.95,34,(53-2))
Ho_R=chowfore<c_R
chowfore

## [,1]
## [1,] 0.765064

Ho_R

## [,1]
## [1,] TRUE

We do not reject the Null Hyp H0 : There is no structural change in the prediction parameters.

Normality test

We apply the Jarque Bera on the residuals of lm5:
jb <- jarque.test(resid(lm5))
jb

##
## Jarque-Bera Normality Test
##
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## data: resid(lm5)
## JB = 7.1616, p-value = 0.02785
## alternative hypothesis: greater

tests <- matrix(c(reset_lm5$statistic,reset_lm5$p.value,chowbreak[1],chowbreak[4],chowfore,chowfore,jb$statistic,jb$p.value),nrow = 4, byrow = T)
colnames(tests) <- c("Test Statistic","p-value")
rownames(tests) <- c("Reset(p=1)","Chow Break","Chow Forecast","Jarque-Bera")
kable(tests,booktabs = TRUE, digits = 3) %>%

kable_styling() %>%
footnote(general = "As break-point 1980 is chosen.")

Test Statistic p-value
Reset(p=1) 3.456 0.067
Chow Break 2.271 0.110
Chow Forecast 0.765 0.765
Jarque-Bera 7.162 0.028
Note:
As break-point 1980 is chosen.

The model does fairly well. Reset with p=1 does not reject the null of correct specification, and both Chow
tests do not reject the null of no breaks. Only Jarque-Bera seem somewhat doubtful, as at 5%, we reject
normality of the residuals. This may hint to some remaining specification problems.

Will the p-values of these tests increase if the full model is considered?
This is actually a tough question and the answer is not trivial. If the book-to-market model is correct and
actually generated the data, we would add insignificant variables to the model. The p-values should be similar
but may differ slightly, simply because of the added variance in the results. If the full model is correct, the
p-values should increase when considering the full model. If neither the full nor the book-to-market model is
correct, it is not clear what will happen to the p-values. This is the challenge you face when doing applied
work. It is never certain how the data are actually generated. What we have are tests to rely on and help
inform us if what we are doing makes sense.

Take a look at the other materials available in my website
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