
Maps in R

Diego López Tamayo ∗

Contents
Why should you use maps? 1

tmap function 2
First steps . 2
Interactive maps . 3
Multiple shapes and layers . 3

pacman::p_load(tidyverse,
ggplot2,
sf,
sp,
tmap)

Why should you use maps?
Maps are used in a variety of fields to express data in an appealing and interpretive way. Data can be
expressed into simplified patterns, and this data interpretation is generally lost if the data is only seen
through a spread sheet. Maps can add vital context by incorporating many variables into an easy to read
and applicable context. Maps are also very important in the information world because they can quickly
allow the public to gain better insight so that they can stay informed. It’s critical to have maps be effective,
which means creating maps that can be easily understood by a given audience.

Basic elements of a map that should be considered are polygon, points, lines, and text.

• Polygons, on a map, are closed shapes such as country borders.
• Lines are considered to be linear shapes that are not filled with any aspect, such as highways, streams,

or roads.
• Finally, points are used to specify specific positions, such as city or landmark locations.

Using R to create maps brings these benefits to mapping. Elements of a map can be added or removed
with ease — R code can be tweaked to make major enhancements with a stroke of a key. It is also easy to
reproduce the same maps for different data sets.

The package ggplot2 implements the grammar of graphics in R, as a way to create code that make sense to
the user: The grammar of graphics is a term used to breaks up graphs into semantic components, such as
geometries and layers. Practically speaking, it allows (and forces!) the user to focus on graph elements at a
higher level of abstraction, and how the data must be structured to achieve the expected outcome. Recently,
the package ggplot2 has allowed the use of simple features from the package sf as layers in a graph1. The
combination of ggplot2 and sf therefore enables to programmatically create maps, using the grammar of
graphics.

∗El Colegio de México, diego.lopez@colmex.mx

1

mailto:diego.lopez@colmex.mx

tmap function
With the tmap package, thematic maps can be generated with great flexibility. The syntax for creating plots
is similar to that of ggplot2, but tailored to maps.

First steps
A good place to start is to create a map of the world.

The object World is a spatial object of class sf from the sf package; it is a data.frame with a special column
that contains a geometry for each row, in this case polygons. In order to plot it in tmap, you first need to
specify it with tm_shape. Layers can be added with the + operator, in this case tm_polygons. There are
many layer functions in tmap, which can easily be found in the documentation by their tm_ prefix.
data("World")
class(World)

[1] "sf" "data.frame"

The “World”-DataFrame includes informations on the population, the economy and so on of all countries in
the world.
World %>% as.data.frame() %>% head()

iso_a3 name sovereignt continent
1 AFG Afghanistan Afghanistan Asia
2 AGO Angola Angola Africa
3 ALB Albania Albania Europe
4 ARE United Arab Emirates United Arab Emirates Asia
5 ARG Argentina Argentina South America
6 ARM Armenia Armenia Asia
area pop_est pop_est_dens economy
1 652860.00 [km^2] 28400000 43.50090 7. Least developed region
2 1246700.00 [km^2] 12799293 10.26654 7. Least developed region
3 27400.00 [km^2] 3639453 132.82675 6. Developing region
4 71252.17 [km^2] 4798491 67.34519 6. Developing region
5 2736690.00 [km^2] 40913584 14.95003 5. Emerging region: G20
6 28470.00 [km^2] 2967004 104.21510 6. Developing region
income_grp gdp_cap_est life_exp well_being footprint inequality
1 5. Low income 784.1549 59.668 3.8 0.79 0.4265574
2 3. Upper middle income 8617.6635 NA NA NA NA
3 4. Lower middle income 5992.6588 77.347 5.5 2.21 0.1651337
4 2. High income: nonOECD 38407.9078 NA NA NA NA
5 3. Upper middle income 14027.1261 75.927 6.5 3.14 0.1642383
6 4. Lower middle income 6326.2469 74.446 4.3 2.23 0.2166481
HPI geometry
1 20.22535 MULTIPOLYGON (((5310471 451...
2 NA MULTIPOLYGON (((1531585 -77...
3 36.76687 MULTIPOLYGON (((1729835 521...
4 NA MULTIPOLYGON (((4675864 313...
5 35.19024 MULTIPOLYGON (((-5017766 -6...
6 25.66642 MULTIPOLYGON (((3677241 513...

After installing tmap, the following lines of code should create the map shown below:
tmap_mode("plot")
tm_shape(World) +

tm_polygons("HPI")

2

https://cran.r-project.org/web/packages/sf/vignettes/sf1.html#How_simple_features_in_R_are_organized

HPI
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
Missing

Interactive maps
Each map can be plotted as a static image or viewed interactively using “plot” and “view” modes, respectively.
The mode can be set with the function tmap_mode, and toggling between the modes can be done with the
‘switch’ ttm() (which stands for toggle thematic map.
tmap_mode("plot")
tm_shape(World) +

tm_polygons("HPI")

HPI
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
Missing

Multiple shapes and layers
A shape is a spatial object (with a class from sf, sp, stars, or raster). Multiple shapes and also multiple layers
per shape can be plotted.

3

data(World, metro)

Let’s have a look into the metro-Data Frame. It shows the population of the metropolitan regions in the
world, for example all metropolitan regions of Switzerland, i.e. Zurich.
metro %>% as.data.frame() %>% dplyr::filter(iso_a3=="CHE") %>% head()

name name_long iso_a3 pop1950 pop1960 pop1970 pop1980 pop1990 pop2000
1 Zurich Zurich (Zurich) CHE 493648 535471 710580 706766 1005859 1078135
pop2010 pop2020 pop2030 geometry
1 1186491 1323169 1493733 POINT (8.50296 47.35785)

Let’s look at the whole world population in 1950 and 2010.
tmap_mode("plot")
map1<-tm_shape(metro)+tm_bubbles("pop1950")
map2<-tm_shape(metro)+tm_bubbles("pop2010")
tmap_arrange(map1,map2,nrow=1)

pop1950

2 mln 4 mln 6 mln 10 mln 14 mln

pop2010

10 mln 20 mln 30 mln 40 mln

tmap_mode("plot")
tmap mode set to plotting
#tm_shape(land) +

#tm_raster("elevation", palette = terrain.colors(4)) +
tm_shape(World) +

tm_borders("gray", lwd = .5) +
tm_text("iso_a3", size = "AREA") +

tm_shape(metro) +
tm_symbols(col = "red", size = "pop2020", scale = .5) +

tm_legend(show = T)

4

AGO

ARG

ATA

AUS

BOL

BRA

CAN

CHN

COD

COL

DZA

ETH

GRL

IDN

IND

IRN

KAZ

LBY
MEX

MLI

MNG

NER

PER

RUS

SAU

SDNTCD

USA

ZAF

pop2020

10 mln 20 mln 30 mln 40 mln

A much better picture can be obtained if the information on the population is presented in a somewhat better
graphic form and supplemented by a growth rate of the population figures. So, let’s add some color and a
nicer looking legend.
Add the column growth into metro dataset
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100
tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",
breaks=c(-Inf, seq(0, 6, by=2), Inf),

palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)", id="name")+

tm_layout(legend.outside = T)

Metro population

10 mln 20 mln 30 mln 40 mln

Growth rate (%)
Less than 0
0 to 2
2 to 4
4 to 6
6 or more

Now we can simply put the two maps (the happiness index world map an the population growth bubbles) on
top of each other and get a simple yet informative map.
data(World, metro)
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100

Define global style and format for map
tmap_style("gray")
tmap_format("World_wide")

$inner.margins
[1] 0.000 0.200 0.025 0.010

5

##
$legend.position
[1] "left" "bottom"
##
$attr.position
[1] "right" "bottom"
##
$scale
[1] 0.8

mapWorld <- tm_shape(World) +
tm_polygons("income_grp", palette="-Blues", contrast=.7, id="name", title="Income group") +
tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",

border.col = "black", border.alpha = .5,
style="fixed", breaks=c(-Inf, seq(0, 6, by=2), Inf),
palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)", id="name")

mapWorld

Income group
1. High income: OECD
2. High income: nonOECD
3. Upper middle income
4. Lower middle income
5. Low income

Metro population

10 mln 20 mln 30 mln 40 mln

Growth rate (%)
Less than 0
0 to 2
2 to 4
4 to 6
6 or more

So this is our first static map. You can’t see details, but you can already see a lot of things from an overview
point of view. But if you want to look at details of individual regions or metropolises, you need something
more, namely an interactive version, which allows you to zoom into your point of interest.

This is very easy with the tmap package. The only thing to do is to change from the plot mode to the view
mode. Afterwards we easyly plot the existing map a second time. Nad abracadabra you have an interactive
leaflet map, where you can zoom in and some additional informations in a tooltip.
set mode to view
Play with the layers
tmap_mode("plot")
mapWorld

6

Income group
1. High income: OECD
2. High income: nonOECD
3. Upper middle income
4. Lower middle income
5. Low income

Metro population

10 mln 20 mln 30 mln 40 mln

Growth rate (%)
Less than 0
0 to 2
2 to 4
4 to 6
6 or more

7

	Why should you use maps?
	tmap function
	First steps
	Interactive maps
	Multiple shapes and layers

